Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Biochemistry

Insulin

Insulin is a polypeptide hormone synthesized in the pancreas by β-cells, which construct a single chain molecule called proinsulin. 

Insulin, secreted by the β-cells of the pancreas in response to rising blood glucose levels, is a signal that glucose is abundant.

Insulin binds to a specific receptor on the cell surface and exerts its metabolic effect by a signaling pathway that involves a receptor tyrosine kinase phosphorylation cascade.

The pancreas secretes insulin or glucagon in response to changes in blood glucose.

Each cell type of the islets produces a single hormone: α-cells produce glucagon; β-cells, insulin; and δ-cells, somatostatin.

Insulin secretion

When blood glucose rises, GLUT2 transporters carry glucose into the b-cells, where it is immediately converted to glucose 6-phosphate by hexokinase IV (glucokinase) and enters glycolysis. The increased rate of glucose catabolism raises [ATP], causing the closing of ATP-gated K+ channels in the plasma membrane. Reduced efflux of K+ depolarizes the membrane, thereby opening voltage-sensitive Ca2+ channels in the plasma membrane. The resulting influx of Ca2+ triggers the release of insulin by exocytosis.

Insulin lowers blood glucose by stimulating glucose uptake by the tissues; the reduced blood glucose is detected by the β-cell as a diminished flux through the hexokinase reaction; this slows or stops the release of insulin. This feedback regulation holds blood glucose concentration nearly constant despite large fluctuations in dietary intake.

 

Insulin counters high blood glucose

Insulin stimulates glucose uptake by muscle and adipose tissue, where the glucose is converted to glucose 6-phosphate. In the liver, insulin also activates glycogen synthase and inactivates glycogen phosphorylase, so that much of the glucose 6-phosphate is channelled into glycogen.

Diabetes mellitus, caused by a deficiency in the secretion or action of insulin, is a relatively common disease. There are two major clinical classes of diabetes mellitus: type I diabetes, or insulin-dependent diabetes mellitus (IDDM), and type II diabetes, or non-insulin-dependent diabetes mellitus (NIDDM), also called insulin-resistant diabetes. In type I diabetes, the disease begins early in life and quickly becomes severe. IDDM requires insulin therapy and careful, lifelong control of the balance between dietary intake and insulin dose.

Characteristic symptoms of type I (and type II) diabetes are excessive thirst and frequent urination (polyuria), leading to the intake of large volumes of water (polydipsia)

Type II diabetes is slow to develop (typically in older, obese individuals), and the symptoms are milder.

Glycolysis Pathway

 

The reactions of Glycolysis take place in the cytosol of cells.

Glucose enters the Glycolysis pathway by conversion to glucose-6-phosphate. Initially, there is energy input corresponding to cleavage of two ~P bonds of ATP. 

1. Hexokinase catalyzes:  glucose + ATP → glucose-6-phosphate + ADP

ATP binds to the enzyme as a complex with Mg++.

The reaction catalyzed by Hexokinase is highly spontaneous 

 

2. Phosphoglucose Isomerase catalyzes: 

glucose-6-phosphate (aldose) → fructose-6-phosphate (ketose)

The Phosphoglucose Isomerase mechanism involves acid/base catalysis, with ring opening, isomerization via an enediolate intermediate, and then ring closure .

3. Phosphofructokinase catalyzes: 

fructose-6-phosphate + ATP  → fructose-1,6-bisphosphate + ADP

The Phosphofructokinase reaction is the rate-limiting step of Glycolysis. The enzyme is highly regulated. 

 

4. Aldolase catalyzes: 

fructose-1,6-bisphosphate   → dihydroxyacetone phosphate + glyceraldehyde-3-phosphate

The Aldolase reaction is an aldol cleavage, the reverse of an aldol condensation.

5. Triose Phosphate Isomerase (TIM) catalyzes

dihydroxyacetone phosphate (ketose) glyceraldehyde-3-phosphate (aldose)

Glycolysis continues from glyceraldehydes-3-phosphate

The equilibrium constant (Keq) for the TIM reaction favors dihydroxyacetone phosphate, but removal of glyceraldehyde-3-phosphate by a subsequent spontaneous reaction allows throughput. 

 

6. Glyceraldehyde-3-phosphate Dehydrogenase catalyzes:

glyceraldehyde-3-phosphate + NAD+ + Pi  → 1,3,bisphosphoglycerate + NADH + H+

This is the only step in Glycolysis in which NAD+ is reduced to NADH

A cysteine thiol at the active site of Glyceraldehyde-3-phosphate Dehydrogenase has a role in catalysis . 

7. Phosphoglycerate Kinase catalyzes:

1,3-bisphosphoglycerate + ADP  →  3-phosphoglycerate + ATP

This transfer of phosphate to ADP, from the carboxyl group on 1,3-bisphosphoglycerate, is reversible

8. Phosphoglycerate Mutase catalyzes:  3-phosphoglycerate → 2-phosphoglycerate

Phosphate is shifted from the hydroxyl on C3 of 3-phosphoglycerate to the hydroxyl on C2.  

9. Enolase catalyzes:  2-phosphoglycerate  → phosphoenolpyruvate + H2O

 

This Mg++-dependent dehydration reaction is inhibited by fluoride. Fluorophosphate forms a complex with Mg++ at the active site .

10. Pyruvate Kinase catalyzes:  phosphoenolpyruvate + ADP  → pyruvate + ATP

This transfer of phosphate from PEP to ADP is spontaneous

Balance sheet for high energy bonds of ATP: 

  • 2 ATP expended
  • 4 ATP produced (2 from each of two 3C fragments from glucose) 
  • Net Production of 2~ P bonds of ATP per glucose

PHOSPHORUS

Serum level of phosphate is 3-4 mg/dl for adults and 5-6 mg/dl in children. Consumption of calcitriol increases phosphate absorption.

Functions of phosphorus
(a) Plays key role in formation of tooth and bone

(b) Production of high energy phosphate compounds such as ATP, CTP, GTP etc.,

(c) Synthesis of nucleotide co-enzymes such as NAD and NADP

(d) Formation of phosphodiester backbone structure for DNA and RNA synthesis

Hypophosphatemia is the condition which leads to decrease in absorption of phosphorus. it leads to hypercalcamia

Hyperphosphatemia, increase in absorption of phosphate was noticed. Hyperphosphatemia leads to cell lysis, hypocalcemia and thyrotoxicosis.

ESSENTIAL FATTY ACIDS (EFAs) Polyunsaturated FAs,such as Linoleic acid and g(gamma)- Linolenic acid, are ESSENTIAL FATTY ACIDS — we cannot make them, and we need them, so we must get them in our diets mostly from plant sources.

FAT-SOLUBLE VITAMINS

The fat-soluble vitamins, A, D, E, and K, are stored in the body for long periods of time and generally pose a greater risk for toxicity when consumed in excess than water-soluble vitamins.

VITAMIN A: RETINOL

 Vitamin A, also called retinol, has many functions in the body. In addition to helping the eyes adjust to light changes, vitamin A plays an important role in bone growth, tooth development, reproduction, cell division, gene expression, and regulation of the immune system.

The skin, eyes, and mucous membranes of the mouth, nose, throat and lungs depend on vitamin A to remain moist. Vitamin A is also an important antioxidant that may play a role in the prevention of certain cancers.

One RAE equals 1 mcg of retinol or 12 mcg of beta-carotene. The Recommended Dietary Allowance (RDA) for vitamin A is 900 mcg/ day for adult males and 700 mcg/ day for adult females.

Vitamin A Deficiency

Vitamin A deficiency is rare, but the disease that results is known as xerophthalmia.

Other signs of possible vitamin A deficiency include decreased resistance to infections, faulty tooth development, and slower bone growth.

Vitamin A toxicity The Tolerable Upper Intake Level (UL) for adults is 3,000 mcg RAE.

VITAMIN D

Vitamin D plays a critical role in the body’s use of calcium and phosphorous. It works by increasing the amount of calcium absorbed from the small intestine, helping to form and maintain bones.

Vitamin D benefits the body by playing a role in immunity and controlling cell growth. Children especially need adequate amounts of vitamin D to develop strong bones and healthy teeth.

RDA  From 12 months to age fifty, the RDA is set at 15 mcg.

20 mcg of cholecalciferol equals 800 International Units (IU), which is the recommendation for maintenance of healthy bone for adults over fifty.

Vitamin D Deficiency

Symptoms of vitamin D deficiency in growing children include rickets (long, soft bowed legs) and flattening of the back of the skull. Vitamin D deficiency in adults may result in osteomalacia (muscle and bone weakness), and osteoporosis (loss of bone mass).

Vitamin D toxicity

The Tolerable Upper Intake Level (UL) for vitamin D is set at 100 mcg for people 9 years of age and older. High doses of vitamin D supplements coupled with large amounts of fortified foods may cause accumulations in the liver and produce signs of poisoning.

VITAMIN E: TOCOPHEROL

Vitamin E benefits the body by acting as an antioxidant, and protecting vitamins A and C, red blood cells, and essential fatty acids from destruction.

RDA  One milligram of alpha-tocopherol equals to 1.5 International Units (IU). RDA guidelines state that males and females over the age of 14 should receive 15 mcg of alpha-tocopherol per day.

Vitamin E Deficiency Vitamin E deficiency is rare. Cases of vitamin E deficiency usually only occur in premature infants and in those unable to absorb fats.

 

VITAMIN K

Vitamin K is naturally produced by the bacteria in the intestines, and plays an essential role in normal blood clotting, promoting bone health, and helping to produce proteins for blood, bones, and kidneys.

RDA

Males and females age 14 - 18: 75 mcg/day; Males and females age 19 and older: 90 mcg/day

Vitamin K Deficiency

Hemorrhage can occur due to sufficient amounts of vitamin K.

Vitamin K deficiency may appear in infants or in people who take anticoagulants, such as Coumadin (warfarin), or antibiotic drugs.

Newborn babies lack the intestinal bacteria to produce vitamin K and need a supplement for the first week.

Nomenclature for stereoisomers: D and L designations are based on the configuration about the single asymmetric carbon in glyceraldehydes

 

For sugars with more than one chiral center, the D or L designation refers to the asymmetric carbon farthest from the aldehyde or keto group.

Most naturally occurring sugars are D isomers.

D & L sugars are mirror images of one another. They have the same name. For example, D-glucose and L-glucose

Other stereoisomers have unique names, e.g., glucose, mannose, galactose, etc. The number of stereoisomers is 2 n, where n is the number of asymmetric centers. The six-carbon aldoses have 4 asymmetric centers, and thus 16 stereoisomers (8 D-sugars and 8 L-sugars

An aldehyde can react with an alcohol to form a hemiacetal

Similarly a ketone can react with an alcohol to form a hemiketal

 

Pentoses and hexoses can cyclize, as the aldehyde or keto group reacts with a hydroxyl on one of the distal carbons

E.g., glucose forms an intra-molecular hemiacetal by reaction of the aldehyde on C1 with the hydroxyl on C5, forming a six-member pyranose ring, named after the compound pyran

The representations of the cyclic sugars below are called Haworth projections.

 

 

Fructose can form either: 

  • a six-member pyranose ring, by reaction of the C2 keto group with the hydroxyl on C6
  • a 5-member furanose ring, by reaction of the C2 keto group with the hydroxyl on C5.

 

 

Cyclization of glucose produces a new asymmetric center at C1, with the two stereoisomers called anomers, α & β

 

Haworth projections represent the cyclic sugars as having essentially planar rings, with the OH at the anomeric C1 extending either:

  • below the ring (α)
  • above the ring (β).

Because of the tetrahedral nature of carbon bonds, the cyclic form of pyranose sugars actually assume a "chair" or "boat" configuration, depending on the sugar

Glycogenolysis

Breakdown of  glycogen to glucose is called glycogenolysis. The Breakdown of glycogen takes place in liver and muscle. In Liver , the end product of glycodgen breakdown is glucose where as in muscles the end product is Lactic acid Under the combined action of Phosphorylase  (breaks only –α-(1,4) linkage )and Debranching enzymes (breaks only α-(1,6) linkage )glycogen is broken down to glucose.

Explore by Exams