NEET MDS Lessons
Biochemistry
- There are two important phospholipids, Phosphatidylcholine and Phosphatidylserine found the cell membrane without which cell cannot function normally.
- Phospholipids are also important for optimal brain health as they found the cell membrane of brain cells also which help them to communicate and influence the receptors function. That is the reason food stuff which is rich in phospholipids like soy, eggs and the brain tissue of animals are good for healthy and smart brain.
- Phospholipids are the main component of cell membrane or plasma membrane. The bilayer of phospholipid molecules determine the transition of minerals, nutrients, and drugs in and out of the cell and affect various functions of them.
- As phospholipids are main component of all cell membrane, they influence a number of organs and tissues, such as the heart, blood cells and the immune system. As we grown up the amount of phospholipids decreases and reaches to decline.
- Phospholipids present in cell membrane provide cell permeability and flexibility with various substances as well its ability to move fluently. The arrangement of phospholipid molecules in lipid bilayer prevent amino acids, carbohydrates, nucleic acids, and proteins from moving across the membrane by diffusion. The lipid bi-layer is usually help to prevent adjacent molecules from sticking to each other.
- The selectivity of cell membrane form certain substances are due to the presence of hydrophobic and hydrophilic part molecules and their arrangement in bilayer. This bilayer is also maintained the normal pH of cell to keeps it functioning properly.
- Phospholipids are also useful in the treatment of memory problem associated with chronic substances as they improve the ability of organism to adapt the chronic stress.
Pantothenic Acid
Pantothenic Acid is involved in energy production, and aids in the formation of hormones and the metabolism of fats, proteins, and carbohydrates from food.
RDA The Adequate Intake (AI) for Pantothenic Acid is 5 mg/day for both adult males and females.
Pantothenic Acid Deficiency
Pantothenic Acid deficiency is uncommon due to its wide availability in most foods.
Sphingosine is an amino alcohol present in sphingomyelins (sphingophospholipids). They do not contain glycerol at all.
Sphingosine is attached by an amide linkage to a fatty acid to produce ceramide. The alcohol group of sphingosine is bound to phosphorylcholine in sphingomyelin structure. .
Sphingomyelins are important constituents of myelin and are found in good quantity in brain and nervous tissues.
FATTY ACIDS
Fatty acids consist of a hydrocarbon chain with a carboxylic acid at one end.
• are usually in esterified form as major components of other lipids
• are often complexed in triacylglycerols (TAGs)
• most have an even number of carbon atoms (usually 14 to 24)
• are synthesized by concatenation of C2 units.
• C16 & C18 FAs are the most common FAs in higher plants and animals
• Are either:
—saturated (all C-C bonds are single bonds) or
—unsaturated (with one or more double bonds in the chain)
—monounsaturated (a single double bond)
1.Example of monounsaturated FA: Oleic acid 18:1(9) (the number in unsaturated FA parentheses indicates that the double bond is between carbons 9 & 10)
2. Double bonds are almost all in the cis conformation
—polyunsaturated (more then one double bond)
Polyunsaturated fatty acids contain 2 or more double bonds. They usually occur at every third carbon atom towards the methyl terminus (-CH3 ) of the molecule. Example of polyunsaturated FA: Linoleic acid 18:2(9,12)
• the number of double bonds in FAs varies from 1 to 4 (usually), but in most bacteria it is rarely more than 1
Saturated FAs are highly flexible molecules that can assume a wide range of conformations because there is relatively free rotation about their C-C bonds.
Nomenclature for stereoisomers: D and L designations are based on the configuration about the single asymmetric carbon in glyceraldehydes
For sugars with more than one chiral center, the D or L designation refers to the asymmetric carbon farthest from the aldehyde or keto group.
Most naturally occurring sugars are D isomers.
D & L sugars are mirror images of one another. They have the same name. For example, D-glucose and L-glucose
Other stereoisomers have unique names, e.g., glucose, mannose, galactose, etc. The number of stereoisomers is 2 n, where n is the number of asymmetric centers. The six-carbon aldoses have 4 asymmetric centers, and thus 16 stereoisomers (8 D-sugars and 8 L-sugars
An aldehyde can react with an alcohol to form a hemiacetal
Similarly a ketone can react with an alcohol to form a hemiketal
Pentoses and hexoses can cyclize, as the aldehyde or keto group reacts with a hydroxyl on one of the distal carbons
E.g., glucose forms an intra-molecular hemiacetal by reaction of the aldehyde on C1 with the hydroxyl on C5, forming a six-member pyranose ring, named after the compound pyran
The representations of the cyclic sugars below are called Haworth projections.
Fructose can form either:
- a six-member pyranose ring, by reaction of the C2 keto group with the hydroxyl on C6
- a 5-member furanose ring, by reaction of the C2 keto group with the hydroxyl on C5.
Cyclization of glucose produces a new asymmetric center at C1, with the two stereoisomers called anomers, α & β
Haworth projections represent the cyclic sugars as having essentially planar rings, with the OH at the anomeric C1 extending either:
- below the ring (α)
- above the ring (β).
Because of the tetrahedral nature of carbon bonds, the cyclic form of pyranose sugars actually assume a "chair" or "boat" configuration, depending on the sugar
ISO-ENZYMES
Iso-enzymes are physically distinct forms of the same enzyme activity. Higher organisms have several physically distinct versions of a given enzyme, each of which catalyzes the same reaction. Isozymes arise through gene duplication and exhibit differences in properties such as sensitivity to particular regulatory factors or substrate affinity that adapts them to specific tissues or circumstances.
Isoforms of Lactate dehydrogenase is useful in diagnosis of myocardial infarction. While study of alkaline phosphatase isoforms are helpful in diagnosis of various bone disorder and obstructive liver diseases.
PHOSPHORUS
Serum level of phosphate is 3-4 mg/dl for adults and 5-6 mg/dl in children. Consumption of calcitriol increases phosphate absorption.
Functions of phosphorus
(a) Plays key role in formation of tooth and bone
(b) Production of high energy phosphate compounds such as ATP, CTP, GTP etc.,
(c) Synthesis of nucleotide co-enzymes such as NAD and NADP
(d) Formation of phosphodiester backbone structure for DNA and RNA synthesis
Hypophosphatemia is the condition which leads to decrease in absorption of phosphorus. it leads to hypercalcamia
Hyperphosphatemia, increase in absorption of phosphate was noticed. Hyperphosphatemia leads to cell lysis, hypocalcemia and thyrotoxicosis.