Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Biochemistry

Folate: Folic Acid, Folacin Folate, also known as folic acid or folacin, aids in protein metabolism, promoting red blood cell formation, and lowering the risk for neural tube birth defects. Folate may also play a role in controlling homocysteine levels, thus reducing the risk for coronary heart disease.

RDA for folate is 400 mcg/day for adult males and females. Pregnancy will increase the RDA for folate to 600 mcg/day.

Folate Deficiency

Folate deficiency affects cell growth and protein production, which can lead to overall impaired growth. Deficiency symptoms also include anemia and diarrhea.

A folate deficiency in women who are pregnant or of child bearing age may result in the delivery of a baby with neural tube defects such as spina bifida.

FATTY  ACIDS

Fatty acids consist of a hydrocarbon chain with a carboxylic acid at one end.

• are usually in esterified form as major components of other lipids

• are often complexed in triacylglycerols (TAGs)

• most have an even number of carbon atoms (usually 14 to 24)

• are synthesized by concatenation of C2 units.

• C16 & C18 FAs are the most common FAs in higher plants and animals

• Are either:

—saturated (all C-C bonds are single bonds) or

—unsaturated (with one or more double bonds in the chain)

—monounsaturated (a single double bond)

1.Example of monounsaturated FA: Oleic acid 18:1(9) (the number in unsaturated FA parentheses indicates that the double bond is between carbons 9 & 10)

2. Double bonds are almost all in the cis conformation

 

—polyunsaturated (more then one double bond)

Polyunsaturated fatty acids contain 2 or more double bonds. They usually occur at every third carbon atom towards the methyl terminus (-CH3 ) of the molecule. Example of polyunsaturated FA: Linoleic acid 18:2(9,12)

• the number of double bonds in FAs varies from 1 to 4 (usually), but in most bacteria it is rarely more than 1

Saturated FAs are highly flexible molecules that can assume a wide range of conformations because there is relatively free rotation about their C-C bonds.

Growth hormone

Growth hormone (GH or HGH), also known as somatotropin or somatropin, is a peptide hormone that stimulates growth, cell reproduction and regeneration in humans.

Growth hormone is a single-chain polypeptide that is synthesized, stored, and secreted by somatotropic cells within the lateral wings of the anterior pituitary gland.

Regulation of growth hormone secretion

Secretion of growth hormone (GH) in the pituitary is regulated by the neurosecretory nuclei of the hypothalamus. These cells release the peptides Growth hormone-releasing hormone (GHRH or somatocrinin) and Growth hormone-inhibiting hormone (GHIH or somatostatin) into the hypophyseal portal venous blood surrounding the pituitary.

GH release in the pituitary is primarily determined by the balance of these two peptides, which in turn is affected by many physiological stimulators (e.g., exercise, nutrition, sleep) and inhibitors (e.g., free fatty acids) of GH secretion.

Regulation

Stimulators of growth hormone (GH) secretion include peptide hormones, ghrelin, sex hormones, hypoglycemia, deep sleep, niacin, fasting, and vigorous exercise.

Inhibitors of GH secretion include somatostatin, circulating concentrations of GH and IGF-1 (negative feedback on the pituitary and hypothalamus), hyperglycemia, glucocorticoids, and dihydrotestosterone.

Clinical significance

The most common disease of GH excess is a pituitary tumor composed of somatotroph cells of the anterior pituitary. These somatotroph adenomas are benign and grow slowly, gradually producing more and more GH excess. The adenoma may become large enough to cause headaches, impair vision by pressure on the optic nerves, or cause deficiency of other pituitary hormones by displacement.

3-D Structure of proteins

Proteins are the main players in the life of a cell. Each protein is a unique sequence of amino acid residues, each of which folds into a unique, stable, three dimentional structure that is biologically functional.

Conformation = spatial arrangement of atoms that depends on rotation of bonds. Can change without breaking covalent bonds.

  • Since each residue has a number of possible conformations, and there are many residues in a protein, the number of possible conformations for a protein is enormous.

Native conformation = single, stable shape a protein assumes under physiological conditions.

  • In native conformation, rotation around covalent bonds in polypeptide is constrained by a number of factors ( H-bonding, weak interactions, steric interference)
  • Biological function of proteins depends completely on its conformation. In biology, shape is everything.
  • Proteins can be classified as globular or fibrous.

There are 4 levels of protein structure

  • Primary structure
    • linear sequence of amino acids
    • held by covalent forces
    • primary structure determines all oversall shape of folded polypeptides (i.e primary structure determines secondary , tertiary, and quaternary structures)
  • Secondary structure
    • regions of regularly repeating conformations of the peptide chain (α helices, β sheets)
    • maintained by H-bonds between amide hydrogens and carbonyl oxygens of peptide backbone.
  • Tertiary structure
    • completely folded and compacted polypeptide chain.
    • stabilized by interactions of sidechains of non-neighboring amino acid residues (fibrous proteins lack tertiary structure)
  • Quaternary structure
    • association of two or more polypeptide chains into a multisubunit protein.

IRON

The normal limit for iron consumption is 20 mg/day for adults, 20-30 mg/day for children and 40 mg/day for pregnant women.

Milk is considered as a poor source of iron.

Factors influencing absorption of iron Iron is absorbed by upper part of duodenum and is affected by various factors

(a) Only reduced form of iron (ferrous) is absorbed and ferric form are not absorbed

 (b) Ascorbic acid (Vitamin C) increases the absorption of iron (c) The interfering substances such as phytic acid and oxalic acid decreases absorption of iron

Regulation of absorption of Iron

Absorption of iron is regulated by three main mechanisms, which includes

(a) Mucosal Regulation

(b) Storer regulation

(c) Erythropoietic regulation

In mucosal regulation absorption of iron requires DM-1 and ferroportin. Both the proteins are down regulated by hepcidin secreted by liver. The above regulation occurs when the body irons reserves are adequate. When the body iron content gets felled, storer regulation takes place. In storer regulation the mucosal is signaled for increase in iron absorption. The erythropoietic regulation occurs in response to anemia. Here the erythroid cells will signal the mucosa to increase the iron absorption.

Iron transport in blood

The transport form of iron in blood is transferin. Transferin are glycoprotein secreted by liver. In blood, the ceruloplasmin is the ferroxidase which oxidizes ferrous to ferric state.

Storage form of iron is ferritin. Almost no iron is excreted through urine.

Anemia

Anemia is the most common nutritional deficiency disease. The microscopic appearance of anemia is characterized by microcytic hypochromic anemia

The abnormal gene responsible for hemosiderosis is located on the short arm of chromosome No.6.

The main causes of iron deficiency or anemia are

(a) Nutritional deficiency of iron (b) Lack of iron absorption (c) Hook worm infection (d) Repeated pregnancy (e) Chronic blood loss (f) Nephrosis (g) Lead poisoning

Glycogen Metabolism

The formation of glycogen from glucose is called Glycogenesis

 

Glycogen is a polymer of glucose residues linked mainly by a(1→ 4)  glycosidic linkages. There are a(1→6) linkages at branch points. The chains and branches are longer than shown. Glucose is stored as glycogen predominantly in liver and muscle cells

Glycogen Synthesis

Uridine diphosphate glucose (UDP-glucose) is the immediate precursor for glycogen synthesis. As glucose residues are added to glycogen, UDP-glucose is the substrate and UDP is released as a reaction product. Nucleotide diphosphate sugars are precursors also for synthesis of other complex carbohydrates, including oligosaccharide chains of glycoproteins, etc.

UDP-glucose is formed from glucose-1-phosphate and uridine triphosphate (UTP)

glucose-1-phosphate + UTP → UDP-glucose + 2 Pi

Cleavage of PPi is the only energy cost for glycogen synthesis (1P bond per glucose residue)

Glycogenin initiates glycogen synthesis. Glycogenin is an enzyme that catalyzes glycosylation of one of its own tyrosine residues.

Physiological regulation of glycogen metabolism

Both synthesis and breakdown of glycogen are spontaneous. If glycogen synthesis and phosphorolysis were active simultaneously in a cell, there would be a futile cycle with cleavage of 1 P bond per cycle

To prevent such a futile cycle, Glycogen Synthase and Glycogen Phosphorylase are reciprocally regulated, both by allosteric effectors and by covalent modification (phosphorylation)

Glycogen catabolism (breakdown)

Glycogen Phosphorylase catalyzes phosphorolytic cleavage of the →(14) glycosidic linkages of glycogen, releasing glucose-1-phosphate as the reaction product.

Glycogen (n residues) + Pi → glycogen (n-1 residues) + glucose-1-phosphate

 

The Major product of glycogen breakdown is glucose -1-phosphate

Fate of glucose-1-phosphate in relation to other pathways:

Phosphoglucomutase catalyzes the reversible reaction:

Glucose-1-phosphate → Glucose-6-phosphate

LIPOPROTIENS

Lipoproteins Consist of a Nonpolar Core & a Single Surface Layer of Amphipathic Lipids

The nonpolar lipid core consists of mainly triacylglycerol and cholesteryl ester and is surrounded by a single surface layer of amphipathic phospholipid and cholesterol molecules .These are oriented so that their polar groups face outward to the aqueous medium. The protein moiety of a lipoprotein is known as an apolipoprotein or apoprotein,constituting nearly 70% of some HDL and as little as 1% of Chylomicons. Some apolipoproteins are integral and cannot be removed, whereas others can be freely transferred to other lipoproteins.

There  re five types of lipoproteins, namely chylomicrons, very low density lipoproteins(VLDL)  low density lipoproteins (LDL), high density Lipoproteins (HDL) and free fatty acid-albumin complexes.

Explore by Exams