Talk to us?

Biochemistry - NEETMDS- courses
NEET MDS Lessons
Biochemistry

Carbohydrates (glycans) have the  basic composition

  • Monosaccharides - simple sugars,  with multiple hydroxyl groups. Based on the number of carbons (e.g., 3, 4, 5, or 6) a monosaccharide is a triose, tetrose, pentose, or hexose, etc.
  • Disaccharides - two monosaccharides covalently linked
  • Oligosaccharides - a few monosaccharides covalently linked.
  • Polysaccharides - polymers consisting of chains of monosaccharide or disaccharide units

IRON

The normal limit for iron consumption is 20 mg/day for adults, 20-30 mg/day for children and 40 mg/day for pregnant women.

Milk is considered as a poor source of iron.

Factors influencing absorption of iron Iron is absorbed by upper part of duodenum and is affected by various factors

(a) Only reduced form of iron (ferrous) is absorbed and ferric form are not absorbed

 (b) Ascorbic acid (Vitamin C) increases the absorption of iron (c) The interfering substances such as phytic acid and oxalic acid decreases absorption of iron

Regulation of absorption of Iron

Absorption of iron is regulated by three main mechanisms, which includes

(a) Mucosal Regulation

(b) Storer regulation

(c) Erythropoietic regulation

In mucosal regulation absorption of iron requires DM-1 and ferroportin. Both the proteins are down regulated by hepcidin secreted by liver. The above regulation occurs when the body irons reserves are adequate. When the body iron content gets felled, storer regulation takes place. In storer regulation the mucosal is signaled for increase in iron absorption. The erythropoietic regulation occurs in response to anemia. Here the erythroid cells will signal the mucosa to increase the iron absorption.

Iron transport in blood

The transport form of iron in blood is transferin. Transferin are glycoprotein secreted by liver. In blood, the ceruloplasmin is the ferroxidase which oxidizes ferrous to ferric state.

Storage form of iron is ferritin. Almost no iron is excreted through urine.

Anemia

Anemia is the most common nutritional deficiency disease. The microscopic appearance of anemia is characterized by microcytic hypochromic anemia

The abnormal gene responsible for hemosiderosis is located on the short arm of chromosome No.6.

The main causes of iron deficiency or anemia are

(a) Nutritional deficiency of iron (b) Lack of iron absorption (c) Hook worm infection (d) Repeated pregnancy (e) Chronic blood loss (f) Nephrosis (g) Lead poisoning

- There are two important phospholipids, Phosphatidylcholine and Phosphatidylserine found the cell membrane without which cell cannot function normally.

- Phospholipids are also important for optimal brain health as they found the cell membrane of brain cells also which help them to communicate and influence the receptors function. That is the reason food stuff which is rich in phospholipids like soy, eggs and the brain tissue of animals are good for healthy and smart brain.

- Phospholipids are the main component of cell membrane or plasma membrane. The bilayer of phospholipid molecules determine the transition of minerals, nutrients, and drugs in and out of the cell and affect various functions of them.

- As phospholipids are main component of all cell membrane, they influence a number of organs and tissues, such as the heart, blood cells and the immune system. As we grown up the amount of phospholipids decreases and reaches to decline.

- Phospholipids present in cell membrane provide cell permeability and flexibility with various substances as well its ability to move fluently. The arrangement of phospholipid molecules in lipid bilayer prevent amino acids, carbohydrates, nucleic acids, and proteins from moving across the membrane by diffusion. The lipid bi-layer is usually help to prevent adjacent molecules from sticking to each other.

- The selectivity of cell membrane form certain substances are due to the presence of hydrophobic and hydrophilic part molecules and their arrangement in bilayer. This bilayer is also maintained the normal pH of cell to keeps it functioning properly.

- Phospholipids are also useful in the treatment of memory problem associated with chronic substances as they improve the ability of organism to adapt the chronic stress.

The basic characteristics of enzymes includes

(i) Almost all the enzymes are proteins and they follow the physical and chemical reactions of proteins (ii) Enzymes are sensitive and labile to heat

(iii) Enzymes are water soluble

(iv) Enzymes could be precipitated by protein precipitating agents such as ammonium sulfate and trichloroacetic acid.

Sphingosine is an amino alcohol present in sphingomyelins (sphingophospholipids).  They do not contain glycerol at all.

Sphingosine is attached by an amide linkage to a fatty acid to produce ceramide. The alcohol group of sphingosine is bound to phosphorylcholine in sphingomyelin structure. .

Sphingomyelins are important constituents of myelin and are found in good quantity in brain and nervous tissues.

Step 1.  Acyl-CoA Dehydrogenase catalyzes oxidation of the fatty acid moiety of acyl-CoA, to produce a double bond between carbon atoms 2 and 3.

There are different Acyl-CoA Dehydrogenases for short (4-6 C), medium (6-10 C), long and very long (12-18 C) chain fatty acids. Very Long Chain Acyl-CoA Dehydrogenase is bound to the inner mitochondrial membrane. The others are soluble enzymes located in the mitochondrial matrix.

FAD is the prosthetic group that functions as electron acceptor for Acyl-CoA Dehydrogenase. 

A glutamate side-chain carboxyl extracts a proton from the a-carbon of the substrate, facilitating transfer of 2 e- with H+ (a hydride) from the b position to FAD. The reduced FAD accepts a second H+, yielding FADH2

The carbonyl oxygen of the thioester substrate is hydrogen bonded to the 2'-OH of the ribityl moiety of FAD, giving this part of FAD a role in positioning the substrate and increasing acidity of the substrate a-proton

The reactive glutamate and FAD are on opposite sides of the substrate at the active site. Thus the reaction is stereospecific, yielding a trans double bond in enoyl-CoA.

FADH2 of Acyl CoA Dehydrogenase is reoxidized by transfer of 2 electrons to an Electron Transfer Flavoprotein (ETF), which in turn passes the electrons to coenzyme Q of the respiratory chain.

Step 2. Enoyl-CoA Hydratase catalyzes stereospecific hydration of the trans double bond produced in the 1st step of the pathway, yielding L-hydroxyacyl-Coenzyme A

Step 3. Hydroxyacyl-CoA Dehydrogenase catalyzes oxidation of the  hydroxyl in the b position (C3) to a ketone. NAD+ is the electron acceptor.

Step 4. b-Ketothiolase (b-Ketoacyl-CoA Thiolase) catalyzes thiolytic cleavage.

A cysteine S attacks the b-keto C. Acetyl-CoA is released, leaving the fatty acyl moiety in thioester linkage to the cysteine thiol. The thiol of HSCoA displaces the cysteine thiol, yielding fatty acyl-CoA (2 C shorter).

A membrane-bound trifunctional protein complex with two subunit types expresses the enzyme activities for steps 2-4 of the b-oxidation pathway for long chain fatty acids. Equivalent enzymes for shorter chain fatty acids are soluble proteins of the mitochondrial matrix.

Summary of one round of the b-oxidation pathway:

fatty acyl-CoA + FAD + NAD+ + HS-CoA → 
            fatty acyl-CoA (2 C shorter) + FADH2 + NADH + H+ + acetyl-CoA

The b-oxidation pathway is cyclic. The product, 2 carbons shorter, is the input to another round of the pathway. If, as is usually the case, the fatty acid contains an even number of C atoms, in the final reaction cycle butyryl-CoA is converted to 2 copies of acetyl-CoA

ATP production:

  • FADH2 of Acyl CoA Dehydrogenase is reoxidized by transfer of 2 e- via ETF to coenzyme Q of the respiratory chain. H+ ejection from the mitochondrial matrix that accompanies transfer of 2 e- from CoQ to oxygen, leads via chemiosmotic coupling to production of approximately 1.5 ATP. (Approx. 4 H+ enter the mitochondrial matrix per ATP synthesized.)
  • NADH is reoxidized by transfer of 2 e- to the respiratory chain complex I. Transfer of 2 e- from complex I to oxygen yields approximately 2.5 ATP.
  • Acetyl-CoA can enter Krebs cycle, where the acetate is oxidized to CO2, yielding additional NADH, FADH2, and ATP. 
  • Fatty acid oxidation is a major source of cellular ATP

b-Oxidation of very long chain fatty acids also occurs within peroxisomes

 

FAD is electron acceptor for peroxisomal Acyl-CoA Oxidase, which catalyzes the first oxidative step of the pathway. The resulting FADH2 is reoxidized in the peroxisome producing hydrogen peroxide FADH2 + O2 à FAD + H2O2

The peroxisomal enzyme Catalase degrades H2O2 by the reaction:
2 H2O22 H2O + O2
These reactions produce no ATP

Once fatty acids are reduced in length within the peroxisomes they may shift to the mitochondria to be catabolized all the way to CO2. Carnitine is also involved in transfer of fatty acids into and out of peroxisomes

TRIGLYCEROL

 

Triacylglycerols (formerly triglycerides) are the esters of glycerol with fatty acids. The fats and oils that are widely distributed in both  plants and animals are chemically triacylglycerols.

 

They are insoluble in water and non-polar in character and commonly known as neutral fats.


Triacylglycerols are the most abundant dietary lipids. They are the form in which we store reduced carbon for energy. Each triacylglycerol has a glycerol backbone to which are esterified 3 fatty acids. Most triacylglycerols are "mixed." The three fatty acids differ in chain length and number of double bonds

 

Structures of acylglycerols :

Monoacylglycerols,  diacylglycerols and triacylglycerols, respectively consisting of one, two and three molecules of fatty acids esterified to

a molecule of glycerol

 

Lipases hydrolyze triacylglycerols, releasing one fatty acid at a time, producing  diacylglycerols, and eventually glycerol

 

Glycerol arising from hydrolysis of triacylglycerols is converted to the Glycolysis intermediate dihydroxyacetone phosphate, by reactions catalyzed by:
(1) Glycerol Kinase
(2) Glycerol Phosphate Dehydrogenase

Free fatty acids, which in solution have detergent properties, are transported in the blood bound to albumin, a serum protein produced by the liver.
Several proteins have been identified that facilitate transport of long chain fatty acids into cells, including the plasma membrane protein CD36

Explore by Exams