NEET MDS Lessons
Biochemistry
Parathyroid Hormone
Parathyroid hormone (PTH), parathormone or parathyrin, is secreted by the chief cells of the parathyroid glands.
It acts to increase the concentration of calcium (Ca2+) in the blood, whereas calcitonin (a hormone produced by the parafollicular cells of the thyroid gland) acts to decrease calcium concentration.
PTH acts to increase the concentration of calcium in the blood by acting upon the parathyroid hormone 1 receptor (high levels in bone and kidney) and the parathyroid hormone 2 receptor (high levels in the central nervous system, pancreas, testis, and placenta).
Effect of parathyroid hormone in regulation of serum calcium.
Bone -> PTH enhances the release of calcium from the large reservoir contained in the bones. Bone resorption is the normal destruction of bone by osteoclasts, which are indirectly stimulated by PTH forming new osteoclasts, which ultimately enhances bone resorption.
Kidney -> PTH enhances active reabsorption of calcium and magnesium from distal tubules of kidney. As bone is degraded, both calcium and phosphate are released. It also decreases the reabsorption of phosphate, with a net loss in plasma phosphate concentration. When the calcium:phosphate ratio increases, more calcium is free in the circulation.
Intestine -> PTH enhances the absorption of calcium in the intestine by increasing the production of activated vitamin D. Vitamin D activation occurs in the kidney. PTH converts vitamin D to its active form (1,25-dihydroxy vitamin D). This activated form of vitamin D increases the absorption of calcium (as Ca2+ ions) by the intestine via calbindin.
By rearranging the above equation we arrive at the Henderson-Hasselbalch equation:
pH = pKa + log[A-]/[HA]
It should be obvious now that the pH of a solution of any acid (for which the equilibrium constant is known, and there are numerous tables with this information) can be calculated knowing the concentration of the acid, HA, and its conjugate base [A-].
At the point of the dissociation where the concentration of the conjugate base [A-] = to that of the acid [HA]:
pH = pKa + log[1]
The log of 1 = 0. Thus, at the mid-point of a titration of a weak acid:
pKa = pH
In other words, the term pKa is that pH at which an equivalent distribution of acid and conjugate base (or base and conjugate acid) exists in solution.
Enzymes are protein catalyst produced by a cell and responsible ‘for the high rate’ and specificity of one or more intracellular or extracellular biochemical reactions.
Enzymes are biological catalysts responsible for supporting almost all of the chemical reactions that maintain animal homeostasis. Enzyme reactions are always reversible.
The substance, upon which an enzyme acts, is called as substrate. Enzymes are involved in conversion of substrate into product.
Almost all enzymes are globular proteins consisting either of a single polypeptide or of two or more polypeptides held together (in quaternary structure) by non-covalent bonds. Enzymes do nothing but speed up the rates at which the equilibrium positions of reversible reactions are attained.
In terms of thermodynamics, enzymes reduce the activation energies of reactions, enabling them to occur much more readily at low temperatures - essential for biological systems.
COPPER
The normal serum level of copper is 25 to 50 mg/dl.
Functions of copper
(a) Copper is necessary for iron absorption and incorporation of iron into hemoglobin.
(b) It is very essential for tyrosinase activity
(c) It is the co-factor for vitamin C requiring hydroxylation
(d) Copper increases the level of high density lipo protein and protects the heart.
Wilson’s disease
In case of Wilson’s disease ceruloplasmin level in blood is drastically reduced.
Wilson’s disease leads to
(i) Accumulation of copper in liver leads to hepatocellular degeneration and cirrhosis
(ii) Deposition of copper in brain basal ganglia leads to leticular degeneration
(iii) Copper deposits as green pigmented ring around cornea and the condition is called as Kayser-Kleischer ring
Over accumulation of copper can be treated by consumption of diet containg low copper and injection of D-penicillamine, which excretes copper through urine.
Menke’s kidney hair syndrome
It is X-linked defect. In this condition copper is absorbed by GI tract, but cannot be transported to blood. The defect in transport of copper to blood is due to absence of an intracellular copper binding ATPase.
Glycogen Storage Diseases are genetic enzyme deficiencies associated with excessive glycogen accumulation within cells.
- When an enzyme defect affects mainly glycogen storage in liver, a common symptom is hypoglycemia (low blood glucose), relating to impaired mobilization of glucose for release to the blood during fasting.
- When the defect is in muscle tissue, weakness and difficulty with exercise result from inability to increase glucose entry into Glycolysis during exercise.
Various type of Glycogen storage disease are
Type |
Name |
Enzyme Deficient |
I |
Von Geirke’s Disease |
Glucose -6-phosphate |
II |
Pompe’s Disease |
(1, 4)glucosidase |
III |
Cori’s Disease |
Debranching Enzymes |
IV |
Andersen’s Disease |
Branching Enzymes |
V |
McArdle’s Disease |
Muscles Glycogen Phosphorylase |
ESSENTIAL FATTY ACIDS (EFAs) Polyunsaturated FAs,such as Linoleic acid and g(gamma)- Linolenic acid, are ESSENTIAL FATTY ACIDS — we cannot make them, and we need them, so we must get them in our diets mostly from plant sources.
The Effects of Enzyme Inhibitors
Enzymes can be inhibited
- competitively, when the substrate and inhibitor compete for binding to the same active site or
- noncompetitively, when the inhibitor binds somewhere else on the enzyme molecule reducing its efficiency.
The distinction can be determined by plotting enzyme activity with and without the inhibitor present.
Competitive Inhibition
In the presence of a competitive inhibitor, it takes a higher substrate concentration to achieve the same velocities that were reached in its absence. So while Vmax can still be reached if sufficient substrate is available, one-half Vmax requires a higher [S] than before and thus Km is larger.
Noncompetitive Inhibition
With noncompetitive inhibition, enzyme molecules that have been bound by the inhibitor are taken out
- enzyme rate (velocity) is reduced for all values of [S], including
- Vmax and one-half Vmax but
- Km remains unchanged because the active site of those enzyme molecules that have not been inhibited is unchanged.