NEET MDS Lessons
Biochemistry
Polyprotic Acids
• Some acids are polyprotic acids; they can lose more than one proton.
• In this case, the conjugate base is also a weak acid.
• For example: Carbonic acid (H2CO3 ) can lose two protons sequentially.
• Each dissociation has a unique Ka and pKa value.
Ka1 = [H+ ][HCO3 - ] / [H2CO3]
Ka2 = [H+ ][CO3 -2 ] / [HCO3- ]
Note: (The difference between a weak acid and its conjugate base differ is one hydrogen)
The Bicarbonate Buffer System
This is the main extracellular buffer system which (also) provides a means for the necessary removal of the CO2 produced by tissue metabolism. The bicarbonate buffer system is the main buffer in blood plasma and consists of carbonic acid as proton donor and bicarbonate as proton acceptor :
H2CO3 = H+ + HCO3–
If there is a change in the ratio in favour of H2CO3, acidosis results.
This change can result from a decrease in [HCO3 − ] or from an increase in [H2CO3 ]
Most common forms of acidosis are metabolic or respiratory
Metabolic acidosis is caused by a decrease in [HCO3 − ] and occurs, for example, in uncontrolled diabetes with ketosis or as a result of starvation.
Respiratory acidosis is brought about when there is an obstruction to respiration (emphysema, asthma or pneumonia) or depression of respiration (toxic doses of morphine or other respiratory depressants)
Alkalosis results when [HCO3 − ] becomes favoured in the bicarbonate/carbonic acid ratio
Metabolic alkalosis occurs when the HCO3 − fraction increases with little or no concomitant change in H2CO3
Severe vomiting (loss of H+ as HCl) or ingestion of excessive amounts of sodium bicarbonate (bicarbonate of soda) can produce this condition
Respiratory alkalosis is induced by hyperventilation because an excessive removal of CO2 from the blood results in a decrease in [H2CO3 ]
Alkalosis can produce convulsive seizures in children and tetany, hysteria, prolonged hot baths or lack of O2 as high altitudes.
The pH of blood is maintained at 7.4 when the buffer ratio [HCO3 − ] / [ H2CO3] becomes 20
STEROIDS
Steroids are the compounds containing a cyclic steroid nucleus (or ring) namely cyclopentanoperhydrophenanthrene (CPPP).It consists of a phenanthrene nucleus (rings A, B and C) to which a cyclopentane ring (D) is attached.
Steroids are the compounds containing a cyclic steroid nucleus (or ring) namely cyclopentanoperhydrophenanthrene (CPPP).It consists of a phenanthrene nucleus (rings A, B and C) to which a cyclopentane ring (D) is attached.
There are several steroids in the biological system. These include cholesterol, bile acids, vitamin D, sex hormones, adrenocortical hormones,sitosterols, cardiac glycosides and alkaloids
FAT-SOLUBLE VITAMINS
The fat-soluble vitamins, A, D, E, and K, are stored in the body for long periods of time and generally pose a greater risk for toxicity when consumed in excess than water-soluble vitamins.
VITAMIN A: RETINOL
Vitamin A, also called retinol, has many functions in the body. In addition to helping the eyes adjust to light changes, vitamin A plays an important role in bone growth, tooth development, reproduction, cell division, gene expression, and regulation of the immune system.
The skin, eyes, and mucous membranes of the mouth, nose, throat and lungs depend on vitamin A to remain moist. Vitamin A is also an important antioxidant that may play a role in the prevention of certain cancers.
One RAE equals 1 mcg of retinol or 12 mcg of beta-carotene. The Recommended Dietary Allowance (RDA) for vitamin A is 900 mcg/ day for adult males and 700 mcg/ day for adult females.
Vitamin A Deficiency
Vitamin A deficiency is rare, but the disease that results is known as xerophthalmia.
Other signs of possible vitamin A deficiency include decreased resistance to infections, faulty tooth development, and slower bone growth.
Vitamin A toxicity The Tolerable Upper Intake Level (UL) for adults is 3,000 mcg RAE.
VITAMIN D
Vitamin D plays a critical role in the body’s use of calcium and phosphorous. It works by increasing the amount of calcium absorbed from the small intestine, helping to form and maintain bones.
Vitamin D benefits the body by playing a role in immunity and controlling cell growth. Children especially need adequate amounts of vitamin D to develop strong bones and healthy teeth.
RDA From 12 months to age fifty, the RDA is set at 15 mcg.
20 mcg of cholecalciferol equals 800 International Units (IU), which is the recommendation for maintenance of healthy bone for adults over fifty.
Vitamin D Deficiency
Symptoms of vitamin D deficiency in growing children include rickets (long, soft bowed legs) and flattening of the back of the skull. Vitamin D deficiency in adults may result in osteomalacia (muscle and bone weakness), and osteoporosis (loss of bone mass).
Vitamin D toxicity
The Tolerable Upper Intake Level (UL) for vitamin D is set at 100 mcg for people 9 years of age and older. High doses of vitamin D supplements coupled with large amounts of fortified foods may cause accumulations in the liver and produce signs of poisoning.
VITAMIN E: TOCOPHEROL
Vitamin E benefits the body by acting as an antioxidant, and protecting vitamins A and C, red blood cells, and essential fatty acids from destruction.
RDA One milligram of alpha-tocopherol equals to 1.5 International Units (IU). RDA guidelines state that males and females over the age of 14 should receive 15 mcg of alpha-tocopherol per day.
Vitamin E Deficiency Vitamin E deficiency is rare. Cases of vitamin E deficiency usually only occur in premature infants and in those unable to absorb fats.
VITAMIN K
Vitamin K is naturally produced by the bacteria in the intestines, and plays an essential role in normal blood clotting, promoting bone health, and helping to produce proteins for blood, bones, and kidneys.
RDA
Males and females age 14 - 18: 75 mcg/day; Males and females age 19 and older: 90 mcg/day
Vitamin K Deficiency
Hemorrhage can occur due to sufficient amounts of vitamin K.
Vitamin K deficiency may appear in infants or in people who take anticoagulants, such as Coumadin (warfarin), or antibiotic drugs.
Newborn babies lack the intestinal bacteria to produce vitamin K and need a supplement for the first week.
Acids and bases can be classified as proton donors and proton acceptors, respectively. This means that the conjugate base of a given acid will carry a net charge that is more negative than the corresponding acid. In biologically relavent compounds various weak acids and bases are encountered, e.g. the acidic and basic amino acids, nucleotides, phospholipids etc.
Weak acids and bases in solution do not fully dissociate and, therefore, there is an equilibrium between the acid and its conjugate base. This equilibrium can be calculated and is termed the equilibrium constant = Ka. This is also referred to as the dissociation constant as it pertains to the dissociation of protons from acids and bases.
In the reaction of a weak acid:
HA <-----> A- + H+
the equlibrium constant can be calculated from the following equation:
Ka = [H+][A-]/[HA]
As in the case of the ion product:
pKa = -logKa
Therefore, in obtaining the -log of both sides of the equation describing the dissociation of a weak acid we arrive at the following equation:
-logKa = -log[H+][A-]/[HA]
Since as indicated above -logKa = pKa and taking into account the laws of logrithms:
pKa = -log[H+] -log[A-]/[HA]
pKa = pH -log[A-]/[HA]
From this equation it can be seen that the smaller the pKa value the stronger is the acid. This is due to the fact that the stronger an acid the more readily it will give up H+ and, therefore, the value of [HA] in the above equation will be relatively small.
PHOSPHOLIPIDS
These are complex or compound lipids containing phosphoric acid, in addition to fatty acids, nitrogenous base and alcohol
There are two classes of phospholipids
1. Glycerophospholipids (or phosphoglycerides) that contain glycerol as the alcohol.
2. Sphingophospholipids (or sphingomyelins) that contain sphingosine as the alcohol
Glycerophospholipids
Glycerophospholipids are the major lipids that occur in biological membranes. They consist of glycerol 3-phosphate esterified at its C1 and C2 with fatty acids. Usually, C1 contains a saturated fatty acid while C2 contains an unsaturated fatty acid.
In glycerophospholipids, we refer to the glycerol residue (highlighted red above) as the "glycerol backbone."
Glycerophospholipids are Amphipathic
Glycerophospholipids are sub classified as
1. Phosphatidylethanolamine or cephalin also abbreviated as PE is found in biological membranes and composed of ethanolamine bonded to phosphate group on diglyceride.
2. Phosphatidylcholine or lecithin or PC which has chloline bonded with phosphate group and glycerophosphoric acid with different fatty acids like palmitic or hexadecanoic acid, margaric acid, oleic acid. It is a major component of cell membrane and mainly present in egg yolk and soy beans.
3. Phosphatidic acid (phosphatidate) (PA)
It consists of a glycerol with one saturated fatty acid bonded to carbon-1 of glycerol and an unsaturated fatty acid bonded to carbon-2 with a phosphate group bonded to carbon-3.
4.Phosphatidylserine (PS)
This phospholipid contains serine as an organic compound with other main components of phospholipids. Generally it found on the cytosolic side of cell membranes.
5. Phosphoinositides
It is a group of phospholipids which are negatively charged and act as a a minor component in the cytosolic side of eukaryotic cell membranes. On the basis of different number of phosphate groups they can be different types like phosphatidylinositol phosphate (PIP), phosphatidylinositol bisphosphate(PIP2) and phosphatidylinositol trisphosphate (PIP3). PIP, PIP2 and PIP3 and collectively termed as phosphoinositide.
6. Cardiolipin :
lt is so named as it was first isolated from heart muscle. Structurally, a cardiolipin consists of two molecules of phosphatidic acid held by an additional glycerol through phosphate groups. lt is an important component of inner mitochondrial membrane. Cardiolipin is the only phosphoglyceride that possesses antigenic properties.
Keq, Kw and pH
As H2O is the medium of biological systems one must consider the role of this molecule in the dissociation of ions from biological molecules. Water is essentially a neutral molecule but will ionize to a small degree. This can be described by a simple equilibrium equation:
H2O <-------> H+ + OH-
This equilibrium can be calculated as for any reaction:
Keq = [H+][OH-]/[H2O]
Since the concentration of H2O is very high (55.5M) relative to that of the [H+] and [OH-], consideration of it is generally removed from the equation by multiplying both sides by 55.5 yielding a new term, Kw:
Kw = [H+][OH-]
This term is referred to as the ion product. In pure water, to which no acids or bases have been added:
Kw = 1 x 10-14 M2
As Kw is constant, if one considers the case of pure water to which no acids or bases have been added:
[H+] = [OH-] = 1 x 10-7 M
This term can be reduced to reflect the hydrogen ion concentration of any solution. This is termed the pH, where:
pH = -log[H+]