Talk to us?

Biochemistry - NEETMDS- courses
NEET MDS Lessons
Biochemistry

Factors regulating blood calcium level

(i) Vitamin D

(a) Vitamin D and absorption of calcium: Active form of calcium is calcitriol. Calcitriol enters intestinal wall and binds to cytoplasmic receptor and then binds with DNA causes depression and consequent transcription of gene code for calbindin. Due to increased availability of calbindin, absorption of calcium increases leading to increased blood calcium level.
(b) Vitamin D and Bone: Vitamin D activates osteoblast, bone forming cells & also stimulates secretion of alkaline phosphatase. Due to this enzyme, calcium and phosphorus increase.

(c) Vitamin D and Kidney: Calcitriol increase reabsorption of calcium and phosphorus by renal tubules.

 

(ii) Parathyroid  hormone (PTH)

Normal PTH level in serum is 10-60ng/l.

(a) PTH and bones: In bone, PTH causes demineralization. It also causes recreation of collagenase from osteoclast  leads to loss of matrix and bone resorption. As a result, mucopolysacharides and hydroxyproline are excreted in urine.

(b) PTH and Kidney: In kidney, PTH causes increased reabsorption of calcium but decreases reabsorption of phosphorus from kidney tubules.

(iii) Calcitonin Calcitonin decreases serum calcium level. It inhibits resorption of bone. It decreases the activity of osteoclasts and increases osteoblasts.

Hyper Calcemia When plasma Ca2+ level is more than 11mg/dl is called Hypercalcemia. It is due to parathyroid adenoma or ectopic PTH secreting tumor. calcium excreted in urine decreases excretion of chloride causing hyperchloremic acidosis.

Hypocalcemia Plasma calcium level less than 8mg/dl is called hypocalcemia. Tetany due to accidental surgical removal of parathyroid glands or by autoimmune disease. In tetany, neuromuscular irritability is increased. Increased Q-7 internal in ECG is seen. Main manifestation is carpopedal spasm. Laryngismus and stridor are also observed.

BIOLOGICAL ROLES OF LIPID

Lipids have the common property of being relatively insoluble in water and soluble in nonpolar solvents such as ether and chloroform. They are important dietary constituents not only because of their high energy value but also because of the fat-soluble vitamins and the essential fatty acids contained in the fat of natural foods

Nonpolar lipids act as electrical insulators, allowing rapid propagation of depolarization waves along myelinated nerves

Combinations of lipid and protein (lipoproteins) are important cellular constituents, occurring both in the cell membrane and in the mitochondria, and serving also as the means of transporting lipids in the blood.

 

b Oxidation Pathway

Fatty Acid Synthesis

pathway location

mitochondrial matrix

cytosol

acyl carriers (thiols)

Coenzyme-A

phosphopantetheine (ACP) & cysteine

electron acceptors/donor

FAD & NAD+

NADPH

hydroxyl intermediate

L

D

2-C product/donor

acetyl-CoA

malonyl-CoA (& acetyl-CoA)

Weak Acids and pKa

• The strength of an acid can be determined by its dissociation constant, Ka.

• Acids that do not dissociate significantly in water are weak acids.

• The dissociation of an acid is expressed by the following reaction: HA = H+ + A- and the dissociation constant Ka = [H+ ][A- ] / [HA]  

• When Ka < 1, [HA] > [H+ ][A- ] and HA is not significantly dissociated. Thus, HA is a weak acid when ka < 1.

• The lesser the value of Ka, the weaker the acid.

• Similar to pH, the value of Ka can also be represented as pKa.

• pKa = -log Ka.

• The larger the pKa, the weaker the acid.

• pKa is a constant for each conjugate acid and its conjugate base pair.

• Most biological compounds are weak acids or weak bases.

CLINICAL SIGNIFICANCE OF ENZYMES

The measurement of enzymes level in serum is applied in diagnostic application

Pancreatic Enzymes

Acute pancreatitis is an inflammatory process where auto digestion of gland was noticed with activation of the certain pancreatic enzymes. Enzymes which involves in pancreatic destruction includes α-amylase, lipase etc.,

1.  α-amylase (AMYs) are calcium dependent hydrolyase class  of metaloenzyme that catalyzes the hydrolysis of 1, 4- α-glycosidic linkages in polysaccharides. The normal values of amylase is in range of 28-100 U/L. Marked increase of 5 to 10 times the upper reference limit (URL) in AMYs activity indicates acute pancreatitis and severe glomerular impairment.

2.  Lipase is single chain glycoprotein. Bile salts and a cofactor called colipase are required for full catalytic activity of lipase. Colipase is secreted by pancreas. Increase in plasma lipase activity indicates acute pancreatitis and carcinoma of the pancreas.

Liver Enzymes

Markers of Hepatocellular Damage

1.  Aspartate transaminase (AST) Aspartate transaminase is present in high concentrations in cells of cardiac and skeletal muscle, liver, kidney and erythrocytes. Damage to any of these tissues may increase plasma AST levels.

The normal value of AST for male is <35 U/ L and for female it is <31 U/L.

2.  Alanine transaminase (ALT) Alanine transaminase is present at high concentrations in liver and to a lesser extent, in skeletal muscle, kidney and heart. Thus in case of liver damage increase in both AST and ALT were noticed. While in myocardial infarction AST is increased with little or no increase in ALT.

The normal value of ALT is <45 U/L and <34 U/L for male and female respectively

Markers of cholestasis

1.  Alkaline phosphatases

Alkaline phosphatases are a group of enzymes that hydrolyse organic phosphates at high pH. They are present in osteoblasts of bone, the cells of the hepatobiliary tract, intestinal wall, renal tubules and placenta.

Gamma-glutamyl-transferase (GGT) Gamma-glutamyl-transferase catalyzes the transfere of the γ–glutamyl group from peptides. The activity of GGT is higher in men than in women. In male the normal value of GGT activity is <55 U/L and for female it is <38 U/L.

2.  Glutamate dehydrogenase (GLD) Glutamate dehydrogenase is a mitochondrial enzyme found in liver, heart muscle and kidneys.

Muscle Enzymes

1.  Creatine Kinase Creatine kinase (CK) is most abundant in cells of brain, cardiac and skeletal.

2.  Lactate Dehydrogenase

Lactate dehydrogenase (LD) catalyses the reversible interconversion of lactate and pyruvate.

The amino acids buffer system

Amino acids contain in their molecule both an acidic (− COOH) and a basic (− NH2) group. They can be visualized as existing in the form of a neutral zwitterion in which a hydrogen atom can pass between the carboxyl and amino groups. 

By the addition or subtraction of a hydrogen ion to or from the zwitterion, either the cation or anion form will be produced 

Thus, when OH ions are added to the solution of amino acid, they take up H+ from it to form water, and the anion is produced. If H+ ions are added, they are taken up by the zwitterion to produce the cation form. In practice, if NaOH is added, the salt H2N - CH- COONa would be formed. and the addition of HCl would result in the formation of amino acid hydrochloride.

Pantothenic Acid

Pantothenic Acid is involved in energy production, and aids in the formation of hormones and the metabolism of fats, proteins, and carbohydrates from food.

RDA The Adequate Intake (AI) for Pantothenic Acid is 5 mg/day for both adult males and females.

Pantothenic Acid Deficiency

Pantothenic Acid deficiency is uncommon due to its wide availability in most foods.

Explore by Exams