Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Biochemistry

CLINICAL SIGNIFICANCE OF ENZYMES

The measurement of enzymes level in serum is applied in diagnostic application

Pancreatic Enzymes

Acute pancreatitis is an inflammatory process where auto digestion of gland was noticed with activation of the certain pancreatic enzymes. Enzymes which involves in pancreatic destruction includes α-amylase, lipase etc.,

1.  α-amylase (AMYs) are calcium dependent hydrolyase class  of metaloenzyme that catalyzes the hydrolysis of 1, 4- α-glycosidic linkages in polysaccharides. The normal values of amylase is in range of 28-100 U/L. Marked increase of 5 to 10 times the upper reference limit (URL) in AMYs activity indicates acute pancreatitis and severe glomerular impairment.

2.  Lipase is single chain glycoprotein. Bile salts and a cofactor called colipase are required for full catalytic activity of lipase. Colipase is secreted by pancreas. Increase in plasma lipase activity indicates acute pancreatitis and carcinoma of the pancreas.

Liver Enzymes

Markers of Hepatocellular Damage

1.  Aspartate transaminase (AST) Aspartate transaminase is present in high concentrations in cells of cardiac and skeletal muscle, liver, kidney and erythrocytes. Damage to any of these tissues may increase plasma AST levels.

The normal value of AST for male is <35 U/ L and for female it is <31 U/L.

2.  Alanine transaminase (ALT) Alanine transaminase is present at high concentrations in liver and to a lesser extent, in skeletal muscle, kidney and heart. Thus in case of liver damage increase in both AST and ALT were noticed. While in myocardial infarction AST is increased with little or no increase in ALT.

The normal value of ALT is <45 U/L and <34 U/L for male and female respectively

Markers of cholestasis

1.  Alkaline phosphatases

Alkaline phosphatases are a group of enzymes that hydrolyse organic phosphates at high pH. They are present in osteoblasts of bone, the cells of the hepatobiliary tract, intestinal wall, renal tubules and placenta.

Gamma-glutamyl-transferase (GGT) Gamma-glutamyl-transferase catalyzes the transfere of the γ–glutamyl group from peptides. The activity of GGT is higher in men than in women. In male the normal value of GGT activity is <55 U/L and for female it is <38 U/L.

2.  Glutamate dehydrogenase (GLD) Glutamate dehydrogenase is a mitochondrial enzyme found in liver, heart muscle and kidneys.

Muscle Enzymes

1.  Creatine Kinase Creatine kinase (CK) is most abundant in cells of brain, cardiac and skeletal.

2.  Lactate Dehydrogenase

Lactate dehydrogenase (LD) catalyses the reversible interconversion of lactate and pyruvate.

Nomenclature for stereoisomers: D and L designations are based on the configuration about the single asymmetric carbon in glyceraldehydes

 

For sugars with more than one chiral center, the D or L designation refers to the asymmetric carbon farthest from the aldehyde or keto group.

Most naturally occurring sugars are D isomers.

D & L sugars are mirror images of one another. They have the same name. For example, D-glucose and L-glucose

Other stereoisomers have unique names, e.g., glucose, mannose, galactose, etc. The number of stereoisomers is 2 n, where n is the number of asymmetric centers. The six-carbon aldoses have 4 asymmetric centers, and thus 16 stereoisomers (8 D-sugars and 8 L-sugars

An aldehyde can react with an alcohol to form a hemiacetal

Similarly a ketone can react with an alcohol to form a hemiketal

 

Pentoses and hexoses can cyclize, as the aldehyde or keto group reacts with a hydroxyl on one of the distal carbons

E.g., glucose forms an intra-molecular hemiacetal by reaction of the aldehyde on C1 with the hydroxyl on C5, forming a six-member pyranose ring, named after the compound pyran

The representations of the cyclic sugars below are called Haworth projections.

 

 

Fructose can form either: 

  • a six-member pyranose ring, by reaction of the C2 keto group with the hydroxyl on C6
  • a 5-member furanose ring, by reaction of the C2 keto group with the hydroxyl on C5.

 

 

Cyclization of glucose produces a new asymmetric center at C1, with the two stereoisomers called anomers, α & β

 

Haworth projections represent the cyclic sugars as having essentially planar rings, with the OH at the anomeric C1 extending either:

  • below the ring (α)
  • above the ring (β).

Because of the tetrahedral nature of carbon bonds, the cyclic form of pyranose sugars actually assume a "chair" or "boat" configuration, depending on the sugar

Niacin: Vitamin B3, Nicotinamide, Nicotinic Acid Niacin, or vitamin B3,

 is involved in energy production, normal enzyme function, digestion, promoting normal appetite, healthy skin, and nerves.

RDA Males: 16 mg/day; Females: 14 mg/day

Niacin Deficiency : Pellagra is the disease state that occurs as a result of severe niacin deficiency. Symptoms include cramps, nausea, mental confusion, and skin problems.

The Bicarbonate Buffer System

This is the main extracellular buffer system which (also) provides a means for the necessary removal of the CO2 produced by tissue metabolism. The bicarbonate buffer system is the main buffer in blood plasma and consists of carbonic acid as proton donor and bicarbonate as proton acceptor :

 H2CO3 = H+ + HCO3

If there is a change in the ratio in favour of H2CO3, acidosis results.

This change can result from a decrease in [HCO3 ] or from an increase in [H2CO3 ]

Most common forms of acidosis are metabolic or respiratory

Metabolic acidosis is caused by a decrease in [HCO3 ] and occurs, for example, in uncontrolled diabetes with ketosis or as a result of starvation.

Respiratory acidosis is brought about when there is an obstruction to respiration (emphysema, asthma or pneumonia) or depression of respiration (toxic doses of morphine or other respiratory depressants)

Alkalosis results when [HCO3 ] becomes favoured in the bicarbonate/carbonic acid ratio

Metabolic alkalosis occurs when the HCO3  fraction increases with little or no concomitant change in H2CO3

Severe vomiting (loss of H+ as HCl) or ingestion of excessive amounts of sodium bicarbonate (bicarbonate of soda) can produce this condition

 

Respiratory alkalosis is induced by hyperventilation because an excessive removal of CO2 from the blood results in a decrease in [H2CO3 ]

Alkalosis can produce convulsive seizures in children and tetany, hysteria, prolonged hot baths or lack of O2 as high altitudes.

The pH of blood is maintained at 7.4 when the buffer ratio [HCO3 − ] / [ H2CO3] becomes 20

Enzymes are protein catalyst produced by a cell and responsible ‘for the high rate’ and specificity of one or more intracellular or extracellular biochemical reactions.

Enzymes are biological catalysts responsible for supporting almost all of the chemical reactions that maintain animal homeostasis. Enzyme reactions are always reversible.

The substance, upon which an enzyme acts, is called as substrate. Enzymes are involved in conversion of substrate into product.

Almost all enzymes are globular proteins consisting either of a single polypeptide or of two or more polypeptides held together (in quaternary structure) by non-covalent bonds. Enzymes do nothing but speed up the rates at which the equilibrium positions of reversible reactions are attained.

 In terms of thermodynamics, enzymes reduce the activation energies of reactions, enabling them to occur much more readily at low temperatures - essential for biological systems.

Clinical significance

Primary hyperparathyroidism is due to autonomous, abnormal hypersecretion of PTH in the parathyroid gland

Secondary hyperparathyroidism is an appropriately high PTH level seen as a physiological response to hypocalcemia.

A low level of PTH in the blood is known as hypoparathyroidism and is most commonly due to damage to or removal of parathyroid glands during thyroid surgery.

Amino acids

Proteins are linear polymers of amino acids. Participate in virtually every biological process. Perform diverse functions:
       1. Enzymes: catalyze all reactions in living organisms
       2. Storage and transport
       3. Structural
       4. Mechanical work ( flagella, muscles, separation of chromosomes)
       5. Decoding information (translation, transcription, DNA replication)
       6. Cell-signalling (hormones and receptors)
       7. Defence (antibodies)

Explore by Exams