NEET MDS Lessons
Biochemistry
Folate: Folic Acid, Folacin Folate, also known as folic acid or folacin, aids in protein metabolism, promoting red blood cell formation, and lowering the risk for neural tube birth defects. Folate may also play a role in controlling homocysteine levels, thus reducing the risk for coronary heart disease.
RDA for folate is 400 mcg/day for adult males and females. Pregnancy will increase the RDA for folate to 600 mcg/day.
Folate Deficiency
Folate deficiency affects cell growth and protein production, which can lead to overall impaired growth. Deficiency symptoms also include anemia and diarrhea.
A folate deficiency in women who are pregnant or of child bearing age may result in the delivery of a baby with neural tube defects such as spina bifida.
IONIZATION OF WATER, WEAK ACIDS AND WEAK BASES
The ionization of water can be described by an equilibrium constant. When weak acids or weak bases are dissolved in water, they can contribute H+ by ionizing (if acids) or consume H+ by being protonated (if bases). These processes are also governed by equilibrium constants
Water molecules have a slight tendency to undergo reversible ionization to yield a hydrogen ion and a hydroxide ion :
H2O = H+ + OH−
The position of equilibrium of any chemical reaction is given by its equilibrium constant. For the general reaction,
A+B = C + D
Enzyme Kinetics
Enzymes are protein catalysts that, like all catalysts, speed up the rate of a chemical reaction without being used up in the process. They achieve their effect by temporarily binding to the substrate and, in doing so, lowering the activation energy needed to convert it to a product.
The rate at which an enzyme works is influenced by several factors, e.g.,
- the concentration of substrate molecules (the more of them available, the quicker the enzyme molecules collide and bind with them). The concentration of substrate is designated [S] and is expressed in unit of molarity.
- the temperature. As the temperature rises, molecular motion - and hence collisions between enzyme and substrate - speed up. But as enzymes are proteins, there is an upper limit beyond which the enzyme becomes denatured and ineffective.
- the presence of inhibitors.
- competitive inhibitors are molecules that bind to the same site as the substrate - preventing the substrate from binding as they do so - but are not changed by the enzyme.
- noncompetitive inhibitors are molecules that bind to some other site on the enzyme reducing its catalytic power.
- pH. The conformation of a protein is influenced by pH and as enzyme activity is crucially dependent on its conformation, its activity is likewise affected.
The study of the rate at which an enzyme works is called enzyme kinetics.
LIPIDS
The lipids are a heterogeneous group of compounds, including fats, oils, steroids, waxes, and related compounds, which are related more by their physical than by their chemical properties.
Lipids are non-polar (hydrophobic) compounds, soluble in organic solvents.
Most membrane lipids are amphipathic, having a non-polar end and a polar end
Lipids are important in biological systems because they form the cell membrane, a mechanical barrier that divides a cell from the external environment.
Lipids also provide energy for life and several essential vitamins are lipids.
Lipids can be divided in two major classes, nonsaponifiable lipids and saponifiable lipids.
A nonsaponifiable lipid cannot be broken up into smaller molecules by hydrolysis, which includes triglycerides, waxes, phospholipids, and sphingolipids.
A saponifiable lipid contains one or more ester groups allowing it to undergo hydrolysis in the presence of an acid, base, or enzyme.
Nonsaponifiable lipids include steroids, prostaglandins, and terpenes
Nonpolar lipids, such as triglycerides, are used for energy storage and fuel.
Polar lipids, which can form a barrier with an external water environment, are used in membranes.
Polar lipids include glycerophospholipids and sphingolipids.
Fatty acids are important components of all of these lipids.
Glycolysis Pathway
The reactions of Glycolysis take place in the cytosol of cells.
Glucose enters the Glycolysis pathway by conversion to glucose-6-phosphate. Initially, there is energy input corresponding to cleavage of two ~P bonds of ATP.
1. Hexokinase catalyzes: glucose + ATP → glucose-6-phosphate + ADP
ATP binds to the enzyme as a complex with Mg++.
The reaction catalyzed by Hexokinase is highly spontaneous
2. Phosphoglucose Isomerase catalyzes:
glucose-6-phosphate (aldose) → fructose-6-phosphate (ketose)
The Phosphoglucose Isomerase mechanism involves acid/base catalysis, with ring opening, isomerization via an enediolate intermediate, and then ring closure .
3. Phosphofructokinase catalyzes:
fructose-6-phosphate + ATP → fructose-1,6-bisphosphate + ADP
The Phosphofructokinase reaction is the rate-limiting step of Glycolysis. The enzyme is highly regulated.
4. Aldolase catalyzes:
fructose-1,6-bisphosphate → dihydroxyacetone phosphate + glyceraldehyde-3-phosphate
The Aldolase reaction is an aldol cleavage, the reverse of an aldol condensation.
5. Triose Phosphate Isomerase (TIM) catalyzes
dihydroxyacetone phosphate (ketose) → glyceraldehyde-3-phosphate (aldose)
Glycolysis continues from glyceraldehydes-3-phosphate
The equilibrium constant (Keq) for the TIM reaction favors dihydroxyacetone phosphate, but removal of glyceraldehyde-3-phosphate by a subsequent spontaneous reaction allows throughput.
6. Glyceraldehyde-3-phosphate Dehydrogenase catalyzes:
glyceraldehyde-3-phosphate + NAD+ + Pi → 1,3,bisphosphoglycerate + NADH + H+
This is the only step in Glycolysis in which NAD+ is reduced to NADH
A cysteine thiol at the active site of Glyceraldehyde-3-phosphate Dehydrogenase has a role in catalysis .
7. Phosphoglycerate Kinase catalyzes:
1,3-bisphosphoglycerate + ADP → 3-phosphoglycerate + ATP
This transfer of phosphate to ADP, from the carboxyl group on 1,3-bisphosphoglycerate, is reversible
8. Phosphoglycerate Mutase catalyzes: 3-phosphoglycerate → 2-phosphoglycerate
Phosphate is shifted from the hydroxyl on C3 of 3-phosphoglycerate to the hydroxyl on C2.
9. Enolase catalyzes: 2-phosphoglycerate → phosphoenolpyruvate + H2O
This Mg++-dependent dehydration reaction is inhibited by fluoride. Fluorophosphate forms a complex with Mg++ at the active site .
10. Pyruvate Kinase catalyzes: phosphoenolpyruvate + ADP → pyruvate + ATP
This transfer of phosphate from PEP to ADP is spontaneous.
Balance sheet for high energy bonds of ATP:
- 2 ATP expended
- 4 ATP produced (2 from each of two 3C fragments from glucose)
- Net Production of 2~ P bonds of ATP per glucose
Carbohydrates (glycans) have the basic composition
- Monosaccharides - simple sugars, with multiple hydroxyl groups. Based on the number of carbons (e.g., 3, 4, 5, or 6) a monosaccharide is a triose, tetrose, pentose, or hexose, etc.
- Disaccharides - two monosaccharides covalently linked
- Oligosaccharides - a few monosaccharides covalently linked.
- Polysaccharides - polymers consisting of chains of monosaccharide or disaccharide units
General structure of amino acids
- All organisms use same 20 amino acids.
- Variation in order of amino acids in polypeptides allow limitless variation.
- All amino acids made up of a chiral carbon attached to 4 different groups
- hydrogen
- amino group
- carboxyl
- R group: varies between different amino acids
- Two stereoisomers (mirror images of one another) can exist for each amino acid. Such stereoisomers are called enantiomers. All amino acids found in proteins are in the L configuration.
- Amino acids are zwitterions at physiological pH 7.4. ( i.e. dipolar ions). Some side chains can also be ionized
Structures of the 20 common amino acids
- Side chains of the 20 amino acids vary. Properties of side chains greatly influence overall conformation of protein. E.g. hydrophobic side chains in water-soluble proteins fold into interior of protein
- Some side chains are nonpolar (hydrophobic), others are polar or ionizable at physiological pH (hydrophilic).
- Side chains fall into several chemical classes: aliphatic, aromatic, sulfur-containing, alcohols, bases, acids, and amides. Also catagorized as to hydrophobic vs hydrophilic.
- Must know 3-letter code for each amino acid.
Aliphatic R Groups
- Glycine: least complex structure. Not chiral. Side chain small enough to fit into niches too small for other amino acids.
- Alanine, Valine, Leucine, Isoleucine
- no reactive functional groups
- highly hydrophobic: play important role in maintaining 3-D structures of proteins because of their tendency to cluster away from water
- Proline has cyclic side chain called a pyrolidine ring. Restricts geometry of polypeptides, sometimes introducing abrupt changes in direction of polypeptide chain.
Aromatic R Groups
- Phenylalanine, Tyrosine, Tryptophan
- Phe has benzene ring therefore hydrophobic.
- Tyr and Trp have side chains with polar groups, therefore less hydrophobic than Phe.
- Absorb UV 280 nm. Therefore used to estimate concentration of proteins.
Sulfur-containing R Groups
- Methionine and Cysteine)
- Met is hydrophobic. Sulfur atom is nucleophilic.
- Cys somewhat hydrophobic. Highly reactive. Form disulfide bridges and may stabilize 3-D structure of proteins by cross-linking Cys residues in peptide chains.
Side Chains with Alcohol Groups
- Serine and Threonine
- have uncharged polar side chains. Alcohol groups give hydrophilic character.
- weakly ionizable.
Basic R Groups
- Histidine, Lysine, and Arginine.
- have hydrophilic side chains that are nitrogenous bases and positively charged at physiological pH.
- Arg is most basic a.a., and contribute positive charges to proteins.
Acidic R Groups and their Amide derivatives
- Aspartate, Glutamate
- are dicarboxylic acids, ionizable at physiological pH. Confer a negative charge on proteins.
- Asparagine, Glutamine
- amides of Asp and Glu rspectively
- highly polar and often found on surface of proteins
- polar amide groups can form H-bonds with atoms in other amino acids with polar side chains.