Talk to us?

Biochemistry - NEETMDS- courses
NEET MDS Lessons
Biochemistry

Niacin: Vitamin B3, Nicotinamide, Nicotinic Acid Niacin, or vitamin B3,

 is involved in energy production, normal enzyme function, digestion, promoting normal appetite, healthy skin, and nerves.

RDA Males: 16 mg/day; Females: 14 mg/day

Niacin Deficiency : Pellagra is the disease state that occurs as a result of severe niacin deficiency. Symptoms include cramps, nausea, mental confusion, and skin problems.

Polyprotic Acids

• Some acids are polyprotic acids; they can lose more than one proton.

• In this case, the conjugate base is also a weak acid.

• For example: Carbonic acid (H2CO3 ) can lose two protons sequentially.

• Each dissociation has a unique Ka and pKa value.

Ka1 = [H+ ][HCO3 - ] / [H2CO3]

Ka2 = [H+ ][CO3 -2 ] / [HCO3-

Note: (The difference between a weak acid and its conjugate base differ is one hydrogen)

ESSENTIAL FATTY ACIDS (EFAs) Polyunsaturated FAs,such as Linoleic acid and g(gamma)- Linolenic acid, are ESSENTIAL FATTY ACIDS — we cannot make them, and we need them, so we must get them in our diets mostly from plant sources.

CLASSIFICATION OF LIPIDS

Lipids are classified as follows:

1. Simple lipids: Esters of fatty acids with various alcohols.

(a) Fats: Esters of fatty acids with glycerol. Oils are fats in the liquid state. A long-chain carboxylic acid; those in animal fats and vegetable oils often have 12–22 carbon atoms.

(b) Waxes: Esters of fatty acids with higher molecular weight monohydric alcohols. Waxes are carboxylic acid esters, RCOOR’ ,with long, straight hydrocarbon chains in both R groups

2. Complex lipids: Esters of fatty acids containing groups in addition to an alcohol and a fatty acid.

(a) Phospholipids: Lipids containing, in addition to fatty acids and an alcohol, a phosphoric acid residue. They frequently have nitrogen containing bases and other substituents,

Eg  glycerophospholipids the alcohol is glycerol

     sphingophospholipids the alcohol is sphingosine.

(b) Glycolipids (glycosphingolipids): Lipids containing a fatty acid, sphingosine, and carbohydrate. These lipids contain a fatty acid, carbohydrate and nitrogenous base. The alcohol  is sphingosine, hence they are also called as glycosphingolipids. Clycerol  and phosphate  are absent  

 

e.g., cerebrosides, gangliosides.

(c) Other complex lipids: Lipids such as sulfolipids and aminolipids. Lipoproteins may also be placed in this category.

3. Precursor and derived lipids: These include fatty acids, glycerol, steroids, other alcohols, fatty aldehydes, and ketone bodies, hydrocarbons, lipid soluble vitamins, and hormones. Because they are uncharged, acylglycerols (glycerides), cholesterol, and cholesteryl esters are termed neutral lipids

4. Miscellaneous lipids: These include a large number of compounds possessing the characteristics of lipids e.g., carotenoids, squalene, hydrocarbons such as pentacosane (in bees wax), terpenes etc.

NEUTRAL LIPIDS: The lipids which are uncharged are referred to as neutral lipids. These are mono-, di-, and triacylglycerols, cholesterol and cholesteryl esters.

Classification of Fatty Acids and Triglycerides

 

Short-chain: 2-4 carbon atoms

Medium-chain: 6-12 carbon atoms

Long-chain: 14-20 carbon atoms

Very long-chain: >20 carbon atoms

 

• are usually in esterified form as major components of other lipids

 

 

A16-carbon fatty acid, with one cis double bond between carbon atoms 9 and 10 may be represented as 16:1 cisD9.

 

Double bonds in fatty acids usually have the cis configuration. Most naturally occurring fatty acids have an even number of carbon atoms

 

Examples of fatty acids

18:0

stearic acid

18:1 cisD9    

oleic acid

18:2 cisD9,12

linoleic acid

18:3 cisD9,12,15  

linonenic acid 

20:4 cisD5,8,11,14   

arachidonic acid

 

 

There is free rotation about C-C bonds in the fatty acid hydrocarbon, except where there is a double bond. Each cis double bond causes a kink in the chain,

Thyroid Hormones

Thyroid hormones (T4 and T3) are tyrosine-based hormones produced by the follicular cells of the thyroid gland and are regulated by TSH made by the thyrotropes of the anterior pituitary gland, are primarily responsible for regulation of metabolism. Iodine is necessary for the production of T3 (triiodothyronine) and T4 (thyroxine).

A deficiency of iodine leads to decreased production of T3 and T4, enlarges  the thyroid tissue and will cause the disease known as goitre.

Thyroid hormones are transported by Thyroid-Binding Globulin

Thyroxine binding globulin (TBG), a glycoprotein binds T4 and T3 and has the capacity to bind 20 μg/dL of plasma.

Diseases

1. Hyperthyroidism (an example is Graves Disease) is the clinical syndrome caused by an excess of circulating free thyroxine, free triiodothyronine, or both. It is a common disorder that affects approximately 2% of women and 0.2% of men.

2 Hypothyroidism (an example is Hashimoto’s thyroiditis) is the case where there is a deficiency of thyroxine, triiodiothyronine, or both.

Glycolysis Pathway

 

The reactions of Glycolysis take place in the cytosol of cells.

Glucose enters the Glycolysis pathway by conversion to glucose-6-phosphate. Initially, there is energy input corresponding to cleavage of two ~P bonds of ATP. 

1. Hexokinase catalyzes:  glucose + ATP → glucose-6-phosphate + ADP

ATP binds to the enzyme as a complex with Mg++.

The reaction catalyzed by Hexokinase is highly spontaneous 

 

2. Phosphoglucose Isomerase catalyzes: 

glucose-6-phosphate (aldose) → fructose-6-phosphate (ketose)

The Phosphoglucose Isomerase mechanism involves acid/base catalysis, with ring opening, isomerization via an enediolate intermediate, and then ring closure .

3. Phosphofructokinase catalyzes: 

fructose-6-phosphate + ATP  → fructose-1,6-bisphosphate + ADP

The Phosphofructokinase reaction is the rate-limiting step of Glycolysis. The enzyme is highly regulated. 

 

4. Aldolase catalyzes: 

fructose-1,6-bisphosphate   → dihydroxyacetone phosphate + glyceraldehyde-3-phosphate

The Aldolase reaction is an aldol cleavage, the reverse of an aldol condensation.

5. Triose Phosphate Isomerase (TIM) catalyzes

dihydroxyacetone phosphate (ketose) glyceraldehyde-3-phosphate (aldose)

Glycolysis continues from glyceraldehydes-3-phosphate

The equilibrium constant (Keq) for the TIM reaction favors dihydroxyacetone phosphate, but removal of glyceraldehyde-3-phosphate by a subsequent spontaneous reaction allows throughput. 

 

6. Glyceraldehyde-3-phosphate Dehydrogenase catalyzes:

glyceraldehyde-3-phosphate + NAD+ + Pi  → 1,3,bisphosphoglycerate + NADH + H+

This is the only step in Glycolysis in which NAD+ is reduced to NADH

A cysteine thiol at the active site of Glyceraldehyde-3-phosphate Dehydrogenase has a role in catalysis . 

7. Phosphoglycerate Kinase catalyzes:

1,3-bisphosphoglycerate + ADP  →  3-phosphoglycerate + ATP

This transfer of phosphate to ADP, from the carboxyl group on 1,3-bisphosphoglycerate, is reversible

8. Phosphoglycerate Mutase catalyzes:  3-phosphoglycerate → 2-phosphoglycerate

Phosphate is shifted from the hydroxyl on C3 of 3-phosphoglycerate to the hydroxyl on C2.  

9. Enolase catalyzes:  2-phosphoglycerate  → phosphoenolpyruvate + H2O

 

This Mg++-dependent dehydration reaction is inhibited by fluoride. Fluorophosphate forms a complex with Mg++ at the active site .

10. Pyruvate Kinase catalyzes:  phosphoenolpyruvate + ADP  → pyruvate + ATP

This transfer of phosphate from PEP to ADP is spontaneous

Balance sheet for high energy bonds of ATP: 

  • 2 ATP expended
  • 4 ATP produced (2 from each of two 3C fragments from glucose) 
  • Net Production of 2~ P bonds of ATP per glucose

Explore by Exams