Talk to us?

Biochemistry - NEETMDS- courses
NEET MDS Lessons
Biochemistry

Weak Acids and pKa

• The strength of an acid can be determined by its dissociation constant, Ka.

• Acids that do not dissociate significantly in water are weak acids.

• The dissociation of an acid is expressed by the following reaction: HA = H+ + A- and the dissociation constant Ka = [H+ ][A- ] / [HA]  

• When Ka < 1, [HA] > [H+ ][A- ] and HA is not significantly dissociated. Thus, HA is a weak acid when ka < 1.

• The lesser the value of Ka, the weaker the acid.

• Similar to pH, the value of Ka can also be represented as pKa.

• pKa = -log Ka.

• The larger the pKa, the weaker the acid.

• pKa is a constant for each conjugate acid and its conjugate base pair.

• Most biological compounds are weak acids or weak bases.

PHOSPHOLIPIDS

These are complex or compound lipids containing phosphoric acid, in addition to fatty acids, nitrogenous base and alcohol 

There are two  classes of phospholipids

1. Glycerophospholipids (or phosphoglycerides) that contain glycerol as the alcohol.

2. Sphingophospholipids (or sphingomyelins) that contain sphingosine as the alcohol

Glycerophospholipids

Glycerophospholipids are the major lipids that occur in biological membranes. They consist of glycerol 3-phosphate esterified at its C1 and C2 with fatty acids. Usually, C1 contains a saturated fatty acid while C2 contains an unsaturated fatty acid.

In glycerophospholipids, we refer to the glycerol residue (highlighted red above) as the "glycerol backbone."

Glycerophospholipids are Amphipathic

Glycerophospholipids are sub classified as

1. Phosphatidylethanolamine or cephalin also abbreviated as PE is found in biological membranes and composed of ethanolamine bonded to phosphate group on diglyceride.

 

2. Phosphatidylcholine or lecithin or PC which has chloline bonded with phosphate group and glycerophosphoric acid with different fatty acids like palmitic or hexadecanoic acid, margaric acid, oleic acid. It is a major component of cell membrane and mainly present in egg yolk and soy beans.

3. Phosphatidic acid (phosphatidate) (PA)

It consists of a glycerol with one saturated fatty acid bonded to carbon-1 of glycerol and an unsaturated fatty acid bonded to carbon-2 with a phosphate group bonded to carbon-3.

4.Phosphatidylserine (PS)

This phospholipid contains serine as an organic compound with other main components of phospholipids. Generally it found on the cytosolic side of cell membranes.

5. Phosphoinositides

It is a group of phospholipids which are negatively charged and act as a a minor component in the cytosolic side of eukaryotic cell membranes. On the basis of different number of phosphate groups they can be different types like phosphatidylinositol phosphate (PIP), phosphatidylinositol bisphosphate(PIP2) and phosphatidylinositol trisphosphate (PIP3). PIP, PIP2 and PIP3 and collectively termed as phosphoinositide.

6. Cardiolipin :

lt is so named as it was first isolated from heart muscle. Structurally, a cardiolipin consists of two molecules of phosphatidic acid held by an additional glycerol through phosphate groups. lt is an important component of inner mitochondrial membrane. Cardiolipin is the only phosphoglyceride that possesses antigenic properties.

Buffers           

• Biological systems use buffers to maintain pH.

• Definition: A buffer is a solution that resists a significant change in pH upon addition of an acid or a base.

• Chemically: A buffer is a mixture of a weak acid and its conjugate base

• Example: Bicarbonate buffer is a mixture of carbonic acid (the weak acid) and the bicarbonate ion (the conjugate base): H2CO3 + HCO3

• All OH- or H+ ions added to a buffer are consumed and the overall [H+ ] or pH is not altered

H2CO3 + HCO3 - + H+ <- -> 2H2CO3

H2CO3 + HCO3 -  +  OH<- -> 2HCO3  - + H2O

• For any weak acid / conjugate base pair, the buffering range is its pKa +1.

 

It should be noted that around the pKa the pH of a solution does not change appreciably even when large amounts of acid or base are added. This phenomenon is known as buffering. In most biochemical studies it is important to perform experiments, that will consume H+ or OH- equivalents, in a solution of a buffering agent that has a pKa near the pH optimum for the experiment.

Most biologic fluids are buffered near neutrality. A buffer resist a pH change and consists of a conjugate acid/base pair.

Important Physiological Buffers include carbonate (H2CO3/HCO3-),

Phosphate (H2PO-4 /HPO2-4) and various protiens

CLINICAL SIGNIFICANCE OF ENZYMES

The measurement of enzymes level in serum is applied in diagnostic application

Pancreatic Enzymes

Acute pancreatitis is an inflammatory process where auto digestion of gland was noticed with activation of the certain pancreatic enzymes. Enzymes which involves in pancreatic destruction includes α-amylase, lipase etc.,

1.  α-amylase (AMYs) are calcium dependent hydrolyase class  of metaloenzyme that catalyzes the hydrolysis of 1, 4- α-glycosidic linkages in polysaccharides. The normal values of amylase is in range of 28-100 U/L. Marked increase of 5 to 10 times the upper reference limit (URL) in AMYs activity indicates acute pancreatitis and severe glomerular impairment.

2.  Lipase is single chain glycoprotein. Bile salts and a cofactor called colipase are required for full catalytic activity of lipase. Colipase is secreted by pancreas. Increase in plasma lipase activity indicates acute pancreatitis and carcinoma of the pancreas.

Liver Enzymes

Markers of Hepatocellular Damage

1.  Aspartate transaminase (AST) Aspartate transaminase is present in high concentrations in cells of cardiac and skeletal muscle, liver, kidney and erythrocytes. Damage to any of these tissues may increase plasma AST levels.

The normal value of AST for male is <35 U/ L and for female it is <31 U/L.

2.  Alanine transaminase (ALT) Alanine transaminase is present at high concentrations in liver and to a lesser extent, in skeletal muscle, kidney and heart. Thus in case of liver damage increase in both AST and ALT were noticed. While in myocardial infarction AST is increased with little or no increase in ALT.

The normal value of ALT is <45 U/L and <34 U/L for male and female respectively

Markers of cholestasis

1.  Alkaline phosphatases

Alkaline phosphatases are a group of enzymes that hydrolyse organic phosphates at high pH. They are present in osteoblasts of bone, the cells of the hepatobiliary tract, intestinal wall, renal tubules and placenta.

Gamma-glutamyl-transferase (GGT) Gamma-glutamyl-transferase catalyzes the transfere of the γ–glutamyl group from peptides. The activity of GGT is higher in men than in women. In male the normal value of GGT activity is <55 U/L and for female it is <38 U/L.

2.  Glutamate dehydrogenase (GLD) Glutamate dehydrogenase is a mitochondrial enzyme found in liver, heart muscle and kidneys.

Muscle Enzymes

1.  Creatine Kinase Creatine kinase (CK) is most abundant in cells of brain, cardiac and skeletal.

2.  Lactate Dehydrogenase

Lactate dehydrogenase (LD) catalyses the reversible interconversion of lactate and pyruvate.

During fasting or carbohydrate starvation, oxaloacetate is depleted in liver because it is used for gluconeogenesis. This impedes entry of acetyl-CoA into Krebs cycle. Acetyl-CoA then is converted in liver mitochondria to ketone bodies, acetoacetate and b-hydroxybutyrate.

 Three enzymes are involved in synthesis of ketone bodies:

b-Ketothiolase. The final step of the b-oxidation pathway runs backwards, condensing 2 acetyl-CoA to produce acetoacetyl-CoA, with release of one CoA.

HMG-CoA Synthase catalyzes condensation of a third acetate moiety (from acetyl-CoA) with acetoacetyl-CoA to form hydroxymethylglutaryl-CoA (HMG-CoA).

HMG-CoA Lyase cleaves HMG-CoA to yield acetoacetate plus acetyl-CoA.

 b-Hydroxybutyrate Dehydrogenase catalyzes inter-conversion of the ketone bodies acetoacetate and b-hydroxybutyrate.

Ketone bodies are transported in the blood to other tissue cells, where they are converted back to acetyl-CoA for catabolism in Krebs cycle

The Bicarbonate Buffer System

This is the main extracellular buffer system which (also) provides a means for the necessary removal of the CO2 produced by tissue metabolism. The bicarbonate buffer system is the main buffer in blood plasma and consists of carbonic acid as proton donor and bicarbonate as proton acceptor :

 H2CO3 = H+ + HCO3

If there is a change in the ratio in favour of H2CO3, acidosis results.

This change can result from a decrease in [HCO3 ] or from an increase in [H2CO3 ]

Most common forms of acidosis are metabolic or respiratory

Metabolic acidosis is caused by a decrease in [HCO3 ] and occurs, for example, in uncontrolled diabetes with ketosis or as a result of starvation.

Respiratory acidosis is brought about when there is an obstruction to respiration (emphysema, asthma or pneumonia) or depression of respiration (toxic doses of morphine or other respiratory depressants)

Alkalosis results when [HCO3 ] becomes favoured in the bicarbonate/carbonic acid ratio

Metabolic alkalosis occurs when the HCO3  fraction increases with little or no concomitant change in H2CO3

Severe vomiting (loss of H+ as HCl) or ingestion of excessive amounts of sodium bicarbonate (bicarbonate of soda) can produce this condition

 

Respiratory alkalosis is induced by hyperventilation because an excessive removal of CO2 from the blood results in a decrease in [H2CO3 ]

Alkalosis can produce convulsive seizures in children and tetany, hysteria, prolonged hot baths or lack of O2 as high altitudes.

The pH of blood is maintained at 7.4 when the buffer ratio [HCO3 − ] / [ H2CO3] becomes 20

- There are two important phospholipids, Phosphatidylcholine and Phosphatidylserine found the cell membrane without which cell cannot function normally.

- Phospholipids are also important for optimal brain health as they found the cell membrane of brain cells also which help them to communicate and influence the receptors function. That is the reason food stuff which is rich in phospholipids like soy, eggs and the brain tissue of animals are good for healthy and smart brain.

- Phospholipids are the main component of cell membrane or plasma membrane. The bilayer of phospholipid molecules determine the transition of minerals, nutrients, and drugs in and out of the cell and affect various functions of them.

- As phospholipids are main component of all cell membrane, they influence a number of organs and tissues, such as the heart, blood cells and the immune system. As we grown up the amount of phospholipids decreases and reaches to decline.

- Phospholipids present in cell membrane provide cell permeability and flexibility with various substances as well its ability to move fluently. The arrangement of phospholipid molecules in lipid bilayer prevent amino acids, carbohydrates, nucleic acids, and proteins from moving across the membrane by diffusion. The lipid bi-layer is usually help to prevent adjacent molecules from sticking to each other.

- The selectivity of cell membrane form certain substances are due to the presence of hydrophobic and hydrophilic part molecules and their arrangement in bilayer. This bilayer is also maintained the normal pH of cell to keeps it functioning properly.

- Phospholipids are also useful in the treatment of memory problem associated with chronic substances as they improve the ability of organism to adapt the chronic stress.

Explore by Exams