NEET MDS Lessons
Biochemistry
Riboflavin: Vitamin B2
Riboflavin, or vitamin B2, helps to release energy from foods, promotes good vision, and healthy skin. It also helps to convert the amino acid tryptophan (which makes up protein) into niacin.
RDA Males: 1.3 mg/day; Females: 1.1 mg/day
Deficiency : Symptoms of deficiency include cracks at the corners of the mouth, dermatitis on nose and lips, light sensitivity, cataracts, and a sore, red tongue.
The Hemoglobin Buffer Systems
These buffer systems are involved in buffering CO2 inside erythrocytes. The buffering capacity of hemoglobin depends on its oxygenation and deoxygenation. Inside the erythrocytes, CO2 combines with H2O to form carbonic acid (H2CO3) under the action of carbonic anhydrase.
At the blood pH 7.4, H2CO3 dissociates into H+ and HCO3 − and needs immediate buffering.
BIOLOGICAL ROLES OF LIPID
Lipids have the common property of being relatively insoluble in water and soluble in nonpolar solvents such as ether and chloroform. They are important dietary constituents not only because of their high energy value but also because of the fat-soluble vitamins and the essential fatty acids contained in the fat of natural foods
Nonpolar lipids act as electrical insulators, allowing rapid propagation of depolarization waves along myelinated nerves
Combinations of lipid and protein (lipoproteins) are important cellular constituents, occurring both in the cell membrane and in the mitochondria, and serving also as the means of transporting lipids in the blood.
Thyroid Hormones
Thyroid hormones (T4 and T3) are tyrosine-based hormones produced by the follicular cells of the thyroid gland and are regulated by TSH made by the thyrotropes of the anterior pituitary gland, are primarily responsible for regulation of metabolism. Iodine is necessary for the production of T3 (triiodothyronine) and T4 (thyroxine).
A deficiency of iodine leads to decreased production of T3 and T4, enlarges the thyroid tissue and will cause the disease known as goitre.
Thyroid hormones are transported by Thyroid-Binding Globulin
Thyroxine binding globulin (TBG), a glycoprotein binds T4 and T3 and has the capacity to bind 20 μg/dL of plasma.
Diseases
1. Hyperthyroidism (an example is Graves Disease) is the clinical syndrome caused by an excess of circulating free thyroxine, free triiodothyronine, or both. It is a common disorder that affects approximately 2% of women and 0.2% of men.
2 Hypothyroidism (an example is Hashimoto’s thyroiditis) is the case where there is a deficiency of thyroxine, triiodiothyronine, or both.
Insulin
Insulin is a polypeptide hormone synthesized in the pancreas by β-cells, which construct a single chain molecule called proinsulin.
Insulin, secreted by the β-cells of the pancreas in response to rising blood glucose levels, is a signal that glucose is abundant.
Insulin binds to a specific receptor on the cell surface and exerts its metabolic effect by a signaling pathway that involves a receptor tyrosine kinase phosphorylation cascade.
The pancreas secretes insulin or glucagon in response to changes in blood glucose.
Each cell type of the islets produces a single hormone: α-cells produce glucagon; β-cells, insulin; and δ-cells, somatostatin.
Insulin secretion
When blood glucose rises, GLUT2 transporters carry glucose into the b-cells, where it is immediately converted to glucose 6-phosphate by hexokinase IV (glucokinase) and enters glycolysis. The increased rate of glucose catabolism raises [ATP], causing the closing of ATP-gated K+ channels in the plasma membrane. Reduced efflux of K+ depolarizes the membrane, thereby opening voltage-sensitive Ca2+ channels in the plasma membrane. The resulting influx of Ca2+ triggers the release of insulin by exocytosis.
Insulin lowers blood glucose by stimulating glucose uptake by the tissues; the reduced blood glucose is detected by the β-cell as a diminished flux through the hexokinase reaction; this slows or stops the release of insulin. This feedback regulation holds blood glucose concentration nearly constant despite large fluctuations in dietary intake.
Insulin counters high blood glucose
Insulin stimulates glucose uptake by muscle and adipose tissue, where the glucose is converted to glucose 6-phosphate. In the liver, insulin also activates glycogen synthase and inactivates glycogen phosphorylase, so that much of the glucose 6-phosphate is channelled into glycogen.
Diabetes mellitus, caused by a deficiency in the secretion or action of insulin, is a relatively common disease. There are two major clinical classes of diabetes mellitus: type I diabetes, or insulin-dependent diabetes mellitus (IDDM), and type II diabetes, or non-insulin-dependent diabetes mellitus (NIDDM), also called insulin-resistant diabetes. In type I diabetes, the disease begins early in life and quickly becomes severe. IDDM requires insulin therapy and careful, lifelong control of the balance between dietary intake and insulin dose.
Characteristic symptoms of type I (and type II) diabetes are excessive thirst and frequent urination (polyuria), leading to the intake of large volumes of water (polydipsia)
Type II diabetes is slow to develop (typically in older, obese individuals), and the symptoms are milder.
FAT-SOLUBLE VITAMINS
The fat-soluble vitamins, A, D, E, and K, are stored in the body for long periods of time and generally pose a greater risk for toxicity when consumed in excess than water-soluble vitamins.
VITAMIN A: RETINOL
Vitamin A, also called retinol, has many functions in the body. In addition to helping the eyes adjust to light changes, vitamin A plays an important role in bone growth, tooth development, reproduction, cell division, gene expression, and regulation of the immune system.
The skin, eyes, and mucous membranes of the mouth, nose, throat and lungs depend on vitamin A to remain moist. Vitamin A is also an important antioxidant that may play a role in the prevention of certain cancers.
One RAE equals 1 mcg of retinol or 12 mcg of beta-carotene. The Recommended Dietary Allowance (RDA) for vitamin A is 900 mcg/ day for adult males and 700 mcg/ day for adult females.
Vitamin A Deficiency
Vitamin A deficiency is rare, but the disease that results is known as xerophthalmia.
Other signs of possible vitamin A deficiency include decreased resistance to infections, faulty tooth development, and slower bone growth.
Vitamin A toxicity The Tolerable Upper Intake Level (UL) for adults is 3,000 mcg RAE.
VITAMIN D
Vitamin D plays a critical role in the body’s use of calcium and phosphorous. It works by increasing the amount of calcium absorbed from the small intestine, helping to form and maintain bones.
Vitamin D benefits the body by playing a role in immunity and controlling cell growth. Children especially need adequate amounts of vitamin D to develop strong bones and healthy teeth.
RDA From 12 months to age fifty, the RDA is set at 15 mcg.
20 mcg of cholecalciferol equals 800 International Units (IU), which is the recommendation for maintenance of healthy bone for adults over fifty.
Vitamin D Deficiency
Symptoms of vitamin D deficiency in growing children include rickets (long, soft bowed legs) and flattening of the back of the skull. Vitamin D deficiency in adults may result in osteomalacia (muscle and bone weakness), and osteoporosis (loss of bone mass).
Vitamin D toxicity
The Tolerable Upper Intake Level (UL) for vitamin D is set at 100 mcg for people 9 years of age and older. High doses of vitamin D supplements coupled with large amounts of fortified foods may cause accumulations in the liver and produce signs of poisoning.
VITAMIN E: TOCOPHEROL
Vitamin E benefits the body by acting as an antioxidant, and protecting vitamins A and C, red blood cells, and essential fatty acids from destruction.
RDA One milligram of alpha-tocopherol equals to 1.5 International Units (IU). RDA guidelines state that males and females over the age of 14 should receive 15 mcg of alpha-tocopherol per day.
Vitamin E Deficiency Vitamin E deficiency is rare. Cases of vitamin E deficiency usually only occur in premature infants and in those unable to absorb fats.
VITAMIN K
Vitamin K is naturally produced by the bacteria in the intestines, and plays an essential role in normal blood clotting, promoting bone health, and helping to produce proteins for blood, bones, and kidneys.
RDA
Males and females age 14 - 18: 75 mcg/day; Males and females age 19 and older: 90 mcg/day
Vitamin K Deficiency
Hemorrhage can occur due to sufficient amounts of vitamin K.
Vitamin K deficiency may appear in infants or in people who take anticoagulants, such as Coumadin (warfarin), or antibiotic drugs.
Newborn babies lack the intestinal bacteria to produce vitamin K and need a supplement for the first week.
ZINC
The enzyme RNA polymerase, which is required for transcription, contains zinc and it is essential for protein bio synthesis.
Deficiency in Zinc leads to poor wound healing, lesions of skin impaired spermatogenesis, hyperkeratosis, dermatitis and alopecia