NEET MDS Lessons
Biochemistry
FAT-SOLUBLE VITAMINS
The fat-soluble vitamins, A, D, E, and K, are stored in the body for long periods of time and generally pose a greater risk for toxicity when consumed in excess than water-soluble vitamins.
VITAMIN A: RETINOL
Vitamin A, also called retinol, has many functions in the body. In addition to helping the eyes adjust to light changes, vitamin A plays an important role in bone growth, tooth development, reproduction, cell division, gene expression, and regulation of the immune system.
The skin, eyes, and mucous membranes of the mouth, nose, throat and lungs depend on vitamin A to remain moist. Vitamin A is also an important antioxidant that may play a role in the prevention of certain cancers.
One RAE equals 1 mcg of retinol or 12 mcg of beta-carotene. The Recommended Dietary Allowance (RDA) for vitamin A is 900 mcg/ day for adult males and 700 mcg/ day for adult females.
Vitamin A Deficiency
Vitamin A deficiency is rare, but the disease that results is known as xerophthalmia.
Other signs of possible vitamin A deficiency include decreased resistance to infections, faulty tooth development, and slower bone growth.
Vitamin A toxicity The Tolerable Upper Intake Level (UL) for adults is 3,000 mcg RAE.
VITAMIN D
Vitamin D plays a critical role in the body’s use of calcium and phosphorous. It works by increasing the amount of calcium absorbed from the small intestine, helping to form and maintain bones.
Vitamin D benefits the body by playing a role in immunity and controlling cell growth. Children especially need adequate amounts of vitamin D to develop strong bones and healthy teeth.
RDA From 12 months to age fifty, the RDA is set at 15 mcg.
20 mcg of cholecalciferol equals 800 International Units (IU), which is the recommendation for maintenance of healthy bone for adults over fifty.
Vitamin D Deficiency
Symptoms of vitamin D deficiency in growing children include rickets (long, soft bowed legs) and flattening of the back of the skull. Vitamin D deficiency in adults may result in osteomalacia (muscle and bone weakness), and osteoporosis (loss of bone mass).
Vitamin D toxicity
The Tolerable Upper Intake Level (UL) for vitamin D is set at 100 mcg for people 9 years of age and older. High doses of vitamin D supplements coupled with large amounts of fortified foods may cause accumulations in the liver and produce signs of poisoning.
VITAMIN E: TOCOPHEROL
Vitamin E benefits the body by acting as an antioxidant, and protecting vitamins A and C, red blood cells, and essential fatty acids from destruction.
RDA One milligram of alpha-tocopherol equals to 1.5 International Units (IU). RDA guidelines state that males and females over the age of 14 should receive 15 mcg of alpha-tocopherol per day.
Vitamin E Deficiency Vitamin E deficiency is rare. Cases of vitamin E deficiency usually only occur in premature infants and in those unable to absorb fats.
VITAMIN K
Vitamin K is naturally produced by the bacteria in the intestines, and plays an essential role in normal blood clotting, promoting bone health, and helping to produce proteins for blood, bones, and kidneys.
RDA
Males and females age 14 - 18: 75 mcg/day; Males and females age 19 and older: 90 mcg/day
Vitamin K Deficiency
Hemorrhage can occur due to sufficient amounts of vitamin K.
Vitamin K deficiency may appear in infants or in people who take anticoagulants, such as Coumadin (warfarin), or antibiotic drugs.
Newborn babies lack the intestinal bacteria to produce vitamin K and need a supplement for the first week.
Essential vs. Nonessential Amino Acids
Nonessential |
Essential |
Alanine |
Arginine* |
Asparagine |
Histidine |
Aspartate |
Isoleucine |
Cysteine |
Leucine |
Glutamate |
Lysine |
Glutamine |
Methionine* |
Glycine |
Phenylalanine* |
Proline |
Threonine |
Serine |
Tyrptophan |
Tyrosine |
Valine |
*The amino acids arginine, methionine and phenylalanine are considered essential for reasons not directly related to lack of synthesis. Arginine is synthesized by mammalian cells but at a rate that is insufficient to meet the growth needs of the body and the majority that is synthesized is cleaved to form urea. Methionine is required in large amounts to produce cysteine if the latter amino acid is not adequately supplied in the diet. Similarly, phenyalanine is needed in large amounts to form tyrosine if the latter is not adequately supplied in the diet.
PHOSPHORUS
Serum level of phosphate is 3-4 mg/dl for adults and 5-6 mg/dl in children. Consumption of calcitriol increases phosphate absorption.
Functions of phosphorus
(a) Plays key role in formation of tooth and bone
(b) Production of high energy phosphate compounds such as ATP, CTP, GTP etc.,
(c) Synthesis of nucleotide co-enzymes such as NAD and NADP
(d) Formation of phosphodiester backbone structure for DNA and RNA synthesis
Hypophosphatemia is the condition which leads to decrease in absorption of phosphorus. it leads to hypercalcamia
Hyperphosphatemia, increase in absorption of phosphate was noticed. Hyperphosphatemia leads to cell lysis, hypocalcemia and thyrotoxicosis.
COENZYMES
Enzymes may be simple proteins, or complex enzymes.
A complex enzyme contains a non-protein part, called as prosthetic group (co-enzymes).
Coenzymes are heat stable low molecular weight organic compound. The combined form of protein and the co-enzyme are called as holo-enzyme. The heat labile or unstable part of the holo-enzyme is called as apo-enzyme. The apo-enzyme gives necessary three dimensional structures required for the enzymatic chemical reaction.
Co-enzymes are very essential for the biological activities of the enzyme.
Co-enzymes combine loosely with apo-enzyme and are released easily by dialysis. Most of the co-enzymes are derivatives of vitamin B complex
Keq, Kw and pH
As H2O is the medium of biological systems one must consider the role of this molecule in the dissociation of ions from biological molecules. Water is essentially a neutral molecule but will ionize to a small degree. This can be described by a simple equilibrium equation:
H2O <-------> H+ + OH-
This equilibrium can be calculated as for any reaction:
Keq = [H+][OH-]/[H2O]
Since the concentration of H2O is very high (55.5M) relative to that of the [H+] and [OH-], consideration of it is generally removed from the equation by multiplying both sides by 55.5 yielding a new term, Kw:
Kw = [H+][OH-]
This term is referred to as the ion product. In pure water, to which no acids or bases have been added:
Kw = 1 x 10-14 M2
As Kw is constant, if one considers the case of pure water to which no acids or bases have been added:
[H+] = [OH-] = 1 x 10-7 M
This term can be reduced to reflect the hydrogen ion concentration of any solution. This is termed the pH, where:
pH = -log[H+]
LIPIDS
The lipids are a heterogeneous group of compounds, including fats, oils, steroids, waxes, and related compounds, which are related more by their physical than by their chemical properties.
Lipids are non-polar (hydrophobic) compounds, soluble in organic solvents.
Most membrane lipids are amphipathic, having a non-polar end and a polar end
Lipids are important in biological systems because they form the cell membrane, a mechanical barrier that divides a cell from the external environment.
Lipids also provide energy for life and several essential vitamins are lipids.
Lipids can be divided in two major classes, nonsaponifiable lipids and saponifiable lipids.
A nonsaponifiable lipid cannot be broken up into smaller molecules by hydrolysis, which includes triglycerides, waxes, phospholipids, and sphingolipids.
A saponifiable lipid contains one or more ester groups allowing it to undergo hydrolysis in the presence of an acid, base, or enzyme.
Nonsaponifiable lipids include steroids, prostaglandins, and terpenes
Nonpolar lipids, such as triglycerides, are used for energy storage and fuel.
Polar lipids, which can form a barrier with an external water environment, are used in membranes.
Polar lipids include glycerophospholipids and sphingolipids.
Fatty acids are important components of all of these lipids.
Parathyroid Hormone
Parathyroid hormone (PTH), parathormone or parathyrin, is secreted by the chief cells of the parathyroid glands.
It acts to increase the concentration of calcium (Ca2+) in the blood, whereas calcitonin (a hormone produced by the parafollicular cells of the thyroid gland) acts to decrease calcium concentration.
PTH acts to increase the concentration of calcium in the blood by acting upon the parathyroid hormone 1 receptor (high levels in bone and kidney) and the parathyroid hormone 2 receptor (high levels in the central nervous system, pancreas, testis, and placenta).
Effect of parathyroid hormone in regulation of serum calcium.
Bone -> PTH enhances the release of calcium from the large reservoir contained in the bones. Bone resorption is the normal destruction of bone by osteoclasts, which are indirectly stimulated by PTH forming new osteoclasts, which ultimately enhances bone resorption.
Kidney -> PTH enhances active reabsorption of calcium and magnesium from distal tubules of kidney. As bone is degraded, both calcium and phosphate are released. It also decreases the reabsorption of phosphate, with a net loss in plasma phosphate concentration. When the calcium:phosphate ratio increases, more calcium is free in the circulation.
Intestine -> PTH enhances the absorption of calcium in the intestine by increasing the production of activated vitamin D. Vitamin D activation occurs in the kidney. PTH converts vitamin D to its active form (1,25-dihydroxy vitamin D). This activated form of vitamin D increases the absorption of calcium (as Ca2+ ions) by the intestine via calbindin.