Talk to us?

Biochemistry - NEETMDS- courses
NEET MDS Lessons
Biochemistry

PHOSPHORUS

Serum level of phosphate is 3-4 mg/dl for adults and 5-6 mg/dl in children. Consumption of calcitriol increases phosphate absorption.

Functions of phosphorus
(a) Plays key role in formation of tooth and bone

(b) Production of high energy phosphate compounds such as ATP, CTP, GTP etc.,

(c) Synthesis of nucleotide co-enzymes such as NAD and NADP

(d) Formation of phosphodiester backbone structure for DNA and RNA synthesis

Hypophosphatemia is the condition which leads to decrease in absorption of phosphorus. it leads to hypercalcamia

Hyperphosphatemia, increase in absorption of phosphate was noticed. Hyperphosphatemia leads to cell lysis, hypocalcemia and thyrotoxicosis.

HORMONES

A hormone is a chemical that acts as a messenger transmitting a signal from one cell to another. When it binds to another cell which is the target of the message, the hormone can alter several aspects of cell function, including cell growth, metabolism, or other function.

Hormones can be classified on three primary ways as following:

1.  Autocrine: An autocrine hormone is one that acts on the same cell that released it.

2.  Paracrine: A paracrine hormone is one that acts on cells which are nearby relative to the cell which released it. An example of paracrine hormones includes growth factors, which are proteins that stimulate cellular proliferation and differentiation.

3. Endocrine: An endocrine hormone is one that is released into the bloodstream by endocrine glands. The receptor cells are distant from the source. An example of an endocrine hormone is insulin, which is released by the pancreas into the bloodstream where it regulates glucose uptake by liver and muscle cells.

Carbohydrates (glycans) have the  basic composition

  • Monosaccharides - simple sugars,  with multiple hydroxyl groups. Based on the number of carbons (e.g., 3, 4, 5, or 6) a monosaccharide is a triose, tetrose, pentose, or hexose, etc.
  • Disaccharides - two monosaccharides covalently linked
  • Oligosaccharides - a few monosaccharides covalently linked.
  • Polysaccharides - polymers consisting of chains of monosaccharide or disaccharide units

TRIGLYCEROL

 

Triacylglycerols (formerly triglycerides) are the esters of glycerol with fatty acids. The fats and oils that are widely distributed in both  plants and animals are chemically triacylglycerols.

 

They are insoluble in water and non-polar in character and commonly known as neutral fats.


Triacylglycerols are the most abundant dietary lipids. They are the form in which we store reduced carbon for energy. Each triacylglycerol has a glycerol backbone to which are esterified 3 fatty acids. Most triacylglycerols are "mixed." The three fatty acids differ in chain length and number of double bonds

 

Structures of acylglycerols :

Monoacylglycerols,  diacylglycerols and triacylglycerols, respectively consisting of one, two and three molecules of fatty acids esterified to

a molecule of glycerol

 

Lipases hydrolyze triacylglycerols, releasing one fatty acid at a time, producing  diacylglycerols, and eventually glycerol

 

Glycerol arising from hydrolysis of triacylglycerols is converted to the Glycolysis intermediate dihydroxyacetone phosphate, by reactions catalyzed by:
(1) Glycerol Kinase
(2) Glycerol Phosphate Dehydrogenase

Free fatty acids, which in solution have detergent properties, are transported in the blood bound to albumin, a serum protein produced by the liver.
Several proteins have been identified that facilitate transport of long chain fatty acids into cells, including the plasma membrane protein CD36

The input to fatty acid synthesis is acetyl-CoA, which is carboxylated to malonyl-CoA.

The ATP-dependent carboxylation provides energy input. The CO2 is lost later during condensation with the growing fatty acid. The spontaneous decarboxylation drives the condensation. 

 fatty acid synthesis
acetyl-CoA + 7 malonyl-CoA + 14 NADPH palmitate + 7 CO2 + 14 NADP+ + 8 CoA

ATP-dependent synthesis of malonate:
8 acetyl-CoA + 14 NADPH + 7 ATP palmitate + 14 NADP+ + 8 CoA + 7 ADP + 7 Pi

Fatty acid synthesis occurs in the cytosol. Acetyl-CoA generated in the mitochondria is transported to the cytosol via a shuttle mechanism involving citrate

Monosaccharides: Aldoses (e.g., glucose) have an aldehyde at one end

They are classified acc to the number of carbon atoms present

Trioses, tetroses, pentose ( ribose, deoxyribose), hexoses  (glucose, galactose, fructose) Heptoses (sedoheptulose)

Glyceraldehyde simplest aldose

Ketoses (e.g., fructose) have a keto group, usually at C 2.

Dihydroxyacetone simplest Ketoses

The higher sugar exists in ring form rather than chain form

Furan  : 4 carbons and 1 oxygen

Pyrans : 5 carban and 1 oxygen

 These result from formation of hemiacital linkage b/w carbonyl and an alcohol group

Pentose Phosphate Pathway (Hexose Monophosphate Shunt)

The pentose phosphate pathway is primarily an anabolic pathway that utilizes the 6 carbons of glucose to generate 5 carbon sugars and reducing equivalents. However, this pathway does oxidize glucose and under certain conditions can completely oxidize glucose to CO2 and water. The primary functions of this pathway are:

  • To generate reducing equivalents, in the form of NADPH, for reductive biosynthesis reactions within cells.
  • To provide the cell with ribose-5-phosphate (R5P) for the synthesis of the nucleotides and nucleic acids.
  • Although not a significant function of the PPP, it can operate to metabolize dietary pentose sugars derived from the digestion of nucleic acids as well as to rearrange the carbon skeletons of dietary carbohydrates into glycolytic/gluconeogenic intermediates

Enzymes that function primarily in the reductive direction utilize the NADP+/NADPH cofactor pair as co-factors as opposed to oxidative enzymes that utilize the NAD+/NADH cofactor pair. The reactions of fatty acid biosynthesis and steroid biosynthesis utilize large amounts of NADPH. As a consequence, cells of the liver, adipose tissue, adrenal cortex, testis and lactating mammary gland have high levels of the PPP enzymes. In fact 30% of the oxidation of glucose in the liver occurs via the PPP. Additionally, erythrocytes utilize the reactions of the PPP to generate large amounts of NADPH used in the reduction of glutathione. The conversion of ribonucleotides to deoxyribonucleotides (through the action of ribonucleotide reductase) requires NADPH as the electron source, therefore, any rapidly proliferating cell needs large quantities of NADPH.

Regulation: Glucose-6-phosphate Dehydrogenase is the committed step of the Pentose Phosphate Pathway. This enzyme is regulated by availability of the substrate NADP+. As NADPH is utilized in reductive synthetic pathways, the increasing concentration of NADP+ stimulates the Pentose Phosphate Pathway, to replenish NADPH

Explore by Exams