NEET MDS Lessons
Biochemistry
The input to fatty acid synthesis is acetyl-CoA, which is carboxylated to malonyl-CoA.
The ATP-dependent carboxylation provides energy input. The CO2 is lost later during condensation with the growing fatty acid. The spontaneous decarboxylation drives the condensation.
fatty acid synthesis
acetyl-CoA + 7 malonyl-CoA + 14 NADPH → palmitate + 7 CO2 + 14 NADP+ + 8 CoA
ATP-dependent synthesis of malonate:
8 acetyl-CoA + 14 NADPH + 7 ATP → palmitate + 14 NADP+ + 8 CoA + 7 ADP + 7 Pi
Fatty acid synthesis occurs in the cytosol. Acetyl-CoA generated in the mitochondria is transported to the cytosol via a shuttle mechanism involving citrate
Folate: Folic Acid, Folacin Folate, also known as folic acid or folacin, aids in protein metabolism, promoting red blood cell formation, and lowering the risk for neural tube birth defects. Folate may also play a role in controlling homocysteine levels, thus reducing the risk for coronary heart disease.
RDA for folate is 400 mcg/day for adult males and females. Pregnancy will increase the RDA for folate to 600 mcg/day.
Folate Deficiency
Folate deficiency affects cell growth and protein production, which can lead to overall impaired growth. Deficiency symptoms also include anemia and diarrhea.
A folate deficiency in women who are pregnant or of child bearing age may result in the delivery of a baby with neural tube defects such as spina bifida.
Biotin
Biotin helps release energy from carbohydrates and aids in the metabolism of fats, proteins and carbohydrates from food.
RDA The Adequate Intake (AI) for Biotin is 30 mcg/day for adult males and females
Biotin Deficiency Biotin deficiency is uncommon under normal circumstances, but symptoms include fatigue, loss of appetite, nausea, vomiting, depression, muscle pains, heart abnormalities and anemia.
CHOLESTEROL AND ITS IMPORTANCE
Cholesterol is an important lipid found in the cell membrane. It is a sterol, which means that cholesterol is a combination of a steroid and an alcohol .
It is an important component of cell membranes and is also the basis for the synthesis of other steroids, including the sex hormones estradiol and testosterone, as well as other steroids such as cortisone and vitamin D.
In the cell membrane, the steroid ring structure of cholesterol provides a rigid hydrophobic structure that helps boost the rigidity of the cell membrane.
Without cholesterol the cell membrane would be too fluid. In the human body, cholesterol is synthesized in the liver.
Cholesterol is insoluble in the blood, so when it is released into the blood stream it forms complexes with lipoproteins.
Cholesterol can bind to two types of lipoprotein, called high-density lipoprotein (HDL) and low-density lipoprotein (LDL).
A lipoprotein is a spherical molecule with water soluble proteins on the exterior. Therefore, when cholesterol is bound to a lipoprotein, it becomes blood soluble and can be transported throughout the body.
HDL cholesterol is transported back to the liver. If HDL levels are low, then the blood level of cholesterol will increase.
High levels of blood cholesterol are associated with plaque formation in the arteries, which can lead to heart disease and stroke.
Insulin
Insulin is a polypeptide hormone synthesized in the pancreas by β-cells, which construct a single chain molecule called proinsulin.
Insulin, secreted by the β-cells of the pancreas in response to rising blood glucose levels, is a signal that glucose is abundant.
Insulin binds to a specific receptor on the cell surface and exerts its metabolic effect by a signaling pathway that involves a receptor tyrosine kinase phosphorylation cascade.
The pancreas secretes insulin or glucagon in response to changes in blood glucose.
Each cell type of the islets produces a single hormone: α-cells produce glucagon; β-cells, insulin; and δ-cells, somatostatin.
Insulin secretion
When blood glucose rises, GLUT2 transporters carry glucose into the b-cells, where it is immediately converted to glucose 6-phosphate by hexokinase IV (glucokinase) and enters glycolysis. The increased rate of glucose catabolism raises [ATP], causing the closing of ATP-gated K+ channels in the plasma membrane. Reduced efflux of K+ depolarizes the membrane, thereby opening voltage-sensitive Ca2+ channels in the plasma membrane. The resulting influx of Ca2+ triggers the release of insulin by exocytosis.
Insulin lowers blood glucose by stimulating glucose uptake by the tissues; the reduced blood glucose is detected by the β-cell as a diminished flux through the hexokinase reaction; this slows or stops the release of insulin. This feedback regulation holds blood glucose concentration nearly constant despite large fluctuations in dietary intake.
Insulin counters high blood glucose
Insulin stimulates glucose uptake by muscle and adipose tissue, where the glucose is converted to glucose 6-phosphate. In the liver, insulin also activates glycogen synthase and inactivates glycogen phosphorylase, so that much of the glucose 6-phosphate is channelled into glycogen.
Diabetes mellitus, caused by a deficiency in the secretion or action of insulin, is a relatively common disease. There are two major clinical classes of diabetes mellitus: type I diabetes, or insulin-dependent diabetes mellitus (IDDM), and type II diabetes, or non-insulin-dependent diabetes mellitus (NIDDM), also called insulin-resistant diabetes. In type I diabetes, the disease begins early in life and quickly becomes severe. IDDM requires insulin therapy and careful, lifelong control of the balance between dietary intake and insulin dose.
Characteristic symptoms of type I (and type II) diabetes are excessive thirst and frequent urination (polyuria), leading to the intake of large volumes of water (polydipsia)
Type II diabetes is slow to develop (typically in older, obese individuals), and the symptoms are milder.
Carbohydrates (glycans) have the basic composition

- Monosaccharides - simple sugars, with multiple hydroxyl groups. Based on the number of carbons (e.g., 3, 4, 5, or 6) a monosaccharide is a triose, tetrose, pentose, or hexose, etc.
- Disaccharides - two monosaccharides covalently linked
- Oligosaccharides - a few monosaccharides covalently linked.
- Polysaccharides - polymers consisting of chains of monosaccharide or disaccharide units
Weak Acids and pKa
• The strength of an acid can be determined by its dissociation constant, Ka.
• Acids that do not dissociate significantly in water are weak acids.
• The dissociation of an acid is expressed by the following reaction: HA = H+ + A- and the dissociation constant Ka = [H+ ][A- ] / [HA]
• When Ka < 1, [HA] > [H+ ][A- ] and HA is not significantly dissociated. Thus, HA is a weak acid when ka < 1.
• The lesser the value of Ka, the weaker the acid.
• Similar to pH, the value of Ka can also be represented as pKa.
• pKa = -log Ka.
• The larger the pKa, the weaker the acid.
• pKa is a constant for each conjugate acid and its conjugate base pair.
• Most biological compounds are weak acids or weak bases.