NEET MDS Lessons
Biochemistry
The Bicarbonate Buffer System
This is the main extracellular buffer system which (also) provides a means for the necessary removal of the CO2 produced by tissue metabolism. The bicarbonate buffer system is the main buffer in blood plasma and consists of carbonic acid as proton donor and bicarbonate as proton acceptor :
H2CO3 = H+ + HCO3–
If there is a change in the ratio in favour of H2CO3, acidosis results.
This change can result from a decrease in [HCO3 − ] or from an increase in [H2CO3 ]
Most common forms of acidosis are metabolic or respiratory
Metabolic acidosis is caused by a decrease in [HCO3 − ] and occurs, for example, in uncontrolled diabetes with ketosis or as a result of starvation.
Respiratory acidosis is brought about when there is an obstruction to respiration (emphysema, asthma or pneumonia) or depression of respiration (toxic doses of morphine or other respiratory depressants)
Alkalosis results when [HCO3 − ] becomes favoured in the bicarbonate/carbonic acid ratio
Metabolic alkalosis occurs when the HCO3 − fraction increases with little or no concomitant change in H2CO3
Severe vomiting (loss of H+ as HCl) or ingestion of excessive amounts of sodium bicarbonate (bicarbonate of soda) can produce this condition
Respiratory alkalosis is induced by hyperventilation because an excessive removal of CO2 from the blood results in a decrease in [H2CO3 ]
Alkalosis can produce convulsive seizures in children and tetany, hysteria, prolonged hot baths or lack of O2 as high altitudes.
The pH of blood is maintained at 7.4 when the buffer ratio [HCO3 − ] / [ H2CO3] becomes 20
Essential vs. Nonessential Amino Acids
Nonessential |
Essential |
Alanine |
Arginine* |
Asparagine |
Histidine |
Aspartate |
Isoleucine |
Cysteine |
Leucine |
Glutamate |
Lysine |
Glutamine |
Methionine* |
Glycine |
Phenylalanine* |
Proline |
Threonine |
Serine |
Tyrptophan |
Tyrosine |
Valine |
*The amino acids arginine, methionine and phenylalanine are considered essential for reasons not directly related to lack of synthesis. Arginine is synthesized by mammalian cells but at a rate that is insufficient to meet the growth needs of the body and the majority that is synthesized is cleaved to form urea. Methionine is required in large amounts to produce cysteine if the latter amino acid is not adequately supplied in the diet. Similarly, phenyalanine is needed in large amounts to form tyrosine if the latter is not adequately supplied in the diet.
Riboflavin: Vitamin B2
Riboflavin, or vitamin B2, helps to release energy from foods, promotes good vision, and healthy skin. It also helps to convert the amino acid tryptophan (which makes up protein) into niacin.
RDA Males: 1.3 mg/day; Females: 1.1 mg/day
Deficiency : Symptoms of deficiency include cracks at the corners of the mouth, dermatitis on nose and lips, light sensitivity, cataracts, and a sore, red tongue.
Nomenclature for stereoisomers: D and L designations are based on the configuration about the single asymmetric carbon in glyceraldehydes
For sugars with more than one chiral center, the D or L designation refers to the asymmetric carbon farthest from the aldehyde or keto group.
Most naturally occurring sugars are D isomers.
D & L sugars are mirror images of one another. They have the same name. For example, D-glucose and L-glucose
Other stereoisomers have unique names, e.g., glucose, mannose, galactose, etc. The number of stereoisomers is 2 n, where n is the number of asymmetric centers. The six-carbon aldoses have 4 asymmetric centers, and thus 16 stereoisomers (8 D-sugars and 8 L-sugars
An aldehyde can react with an alcohol to form a hemiacetal
Similarly a ketone can react with an alcohol to form a hemiketal
Pentoses and hexoses can cyclize, as the aldehyde or keto group reacts with a hydroxyl on one of the distal carbons
E.g., glucose forms an intra-molecular hemiacetal by reaction of the aldehyde on C1 with the hydroxyl on C5, forming a six-member pyranose ring, named after the compound pyran
The representations of the cyclic sugars below are called Haworth projections.
Fructose can form either:
- a six-member pyranose ring, by reaction of the C2 keto group with the hydroxyl on C6
- a 5-member furanose ring, by reaction of the C2 keto group with the hydroxyl on C5.
Cyclization of glucose produces a new asymmetric center at C1, with the two stereoisomers called anomers, α & β
Haworth projections represent the cyclic sugars as having essentially planar rings, with the OH at the anomeric C1 extending either:
- below the ring (α)
- above the ring (β).
Because of the tetrahedral nature of carbon bonds, the cyclic form of pyranose sugars actually assume a "chair" or "boat" configuration, depending on the sugar
- There are two important phospholipids, Phosphatidylcholine and Phosphatidylserine found the cell membrane without which cell cannot function normally.
- Phospholipids are also important for optimal brain health as they found the cell membrane of brain cells also which help them to communicate and influence the receptors function. That is the reason food stuff which is rich in phospholipids like soy, eggs and the brain tissue of animals are good for healthy and smart brain.
- Phospholipids are the main component of cell membrane or plasma membrane. The bilayer of phospholipid molecules determine the transition of minerals, nutrients, and drugs in and out of the cell and affect various functions of them.
- As phospholipids are main component of all cell membrane, they influence a number of organs and tissues, such as the heart, blood cells and the immune system. As we grown up the amount of phospholipids decreases and reaches to decline.
- Phospholipids present in cell membrane provide cell permeability and flexibility with various substances as well its ability to move fluently. The arrangement of phospholipid molecules in lipid bilayer prevent amino acids, carbohydrates, nucleic acids, and proteins from moving across the membrane by diffusion. The lipid bi-layer is usually help to prevent adjacent molecules from sticking to each other.
- The selectivity of cell membrane form certain substances are due to the presence of hydrophobic and hydrophilic part molecules and their arrangement in bilayer. This bilayer is also maintained the normal pH of cell to keeps it functioning properly.
- Phospholipids are also useful in the treatment of memory problem associated with chronic substances as they improve the ability of organism to adapt the chronic stress.
Folate: Folic Acid, Folacin Folate, also known as folic acid or folacin, aids in protein metabolism, promoting red blood cell formation, and lowering the risk for neural tube birth defects. Folate may also play a role in controlling homocysteine levels, thus reducing the risk for coronary heart disease.
RDA for folate is 400 mcg/day for adult males and females. Pregnancy will increase the RDA for folate to 600 mcg/day.
Folate Deficiency
Folate deficiency affects cell growth and protein production, which can lead to overall impaired growth. Deficiency symptoms also include anemia and diarrhea.
A folate deficiency in women who are pregnant or of child bearing age may result in the delivery of a baby with neural tube defects such as spina bifida.
Glycogen Storage Diseases are genetic enzyme deficiencies associated with excessive glycogen accumulation within cells.
- When an enzyme defect affects mainly glycogen storage in liver, a common symptom is hypoglycemia (low blood glucose), relating to impaired mobilization of glucose for release to the blood during fasting.
- When the defect is in muscle tissue, weakness and difficulty with exercise result from inability to increase glucose entry into Glycolysis during exercise.
Various type of Glycogen storage disease are
Type |
Name |
Enzyme Deficient |
I |
Von Geirke’s Disease |
Glucose -6-phosphate |
II |
Pompe’s Disease |
(1, 4)glucosidase |
III |
Cori’s Disease |
Debranching Enzymes |
IV |
Andersen’s Disease |
Branching Enzymes |
V |
McArdle’s Disease |
Muscles Glycogen Phosphorylase |