NEET MDS Lessons
Biochemistry
Regulation of PTH secretion
Secretion of parathyroid hormone is controlled chiefly by serum [Ca2+] through negative feedback. Calcium-sensing receptors located on parathyroid cells are activated when [Ca2+] is low.
Hypomagnesemia inhibits PTH secretion and also causes resistance to PTH, leading to a form of hypoparathyroidism that is reversible.
Hypermagnesemia also results in inhibition of PTH secretion.
Stimulators of PTH includes decreased serum [Ca2+], mild decreases in serum [Mg2+], and an increase in serum phosphate.
Inhibitors include increased serum [Ca2+], severe decreases in serum [Mg2+], which also produces symptoms of hypoparathyroidism (such as hypocalcemia), and calcitriol.
Applications of the Henderson-Hasselbalch equation
• Calculate the ratio of CB to WA, if pH is given
• Calculate the pH, if ratio of CB to WA is known
• Calculate the pH of a weak acid solution of known concentration
• Determine the pKa of a WA-CB pair
• Calculate change in pH when strong base is added to a solution of weak acid. This is represented in a titration curve
• Calculate the pI
Nomenclature for stereoisomers: D and L designations are based on the configuration about the single asymmetric carbon in glyceraldehydes
For sugars with more than one chiral center, the D or L designation refers to the asymmetric carbon farthest from the aldehyde or keto group.
Most naturally occurring sugars are D isomers.
D & L sugars are mirror images of one another. They have the same name. For example, D-glucose and L-glucose
Other stereoisomers have unique names, e.g., glucose, mannose, galactose, etc. The number of stereoisomers is 2 n, where n is the number of asymmetric centers. The six-carbon aldoses have 4 asymmetric centers, and thus 16 stereoisomers (8 D-sugars and 8 L-sugars
An aldehyde can react with an alcohol to form a hemiacetal
Similarly a ketone can react with an alcohol to form a hemiketal
Pentoses and hexoses can cyclize, as the aldehyde or keto group reacts with a hydroxyl on one of the distal carbons
E.g., glucose forms an intra-molecular hemiacetal by reaction of the aldehyde on C1 with the hydroxyl on C5, forming a six-member pyranose ring, named after the compound pyran
The representations of the cyclic sugars below are called Haworth projections.
Fructose can form either:
- a six-member pyranose ring, by reaction of the C2 keto group with the hydroxyl on C6
- a 5-member furanose ring, by reaction of the C2 keto group with the hydroxyl on C5.
Cyclization of glucose produces a new asymmetric center at C1, with the two stereoisomers called anomers, α & β
Haworth projections represent the cyclic sugars as having essentially planar rings, with the OH at the anomeric C1 extending either:
- below the ring (α)
- above the ring (β).
Because of the tetrahedral nature of carbon bonds, the cyclic form of pyranose sugars actually assume a "chair" or "boat" configuration, depending on the sugar
Parathyroid Hormone
Parathyroid hormone (PTH), parathormone or parathyrin, is secreted by the chief cells of the parathyroid glands.
It acts to increase the concentration of calcium (Ca2+) in the blood, whereas calcitonin (a hormone produced by the parafollicular cells of the thyroid gland) acts to decrease calcium concentration.
PTH acts to increase the concentration of calcium in the blood by acting upon the parathyroid hormone 1 receptor (high levels in bone and kidney) and the parathyroid hormone 2 receptor (high levels in the central nervous system, pancreas, testis, and placenta).
Effect of parathyroid hormone in regulation of serum calcium.
Bone -> PTH enhances the release of calcium from the large reservoir contained in the bones. Bone resorption is the normal destruction of bone by osteoclasts, which are indirectly stimulated by PTH forming new osteoclasts, which ultimately enhances bone resorption.
Kidney -> PTH enhances active reabsorption of calcium and magnesium from distal tubules of kidney. As bone is degraded, both calcium and phosphate are released. It also decreases the reabsorption of phosphate, with a net loss in plasma phosphate concentration. When the calcium:phosphate ratio increases, more calcium is free in the circulation.
Intestine -> PTH enhances the absorption of calcium in the intestine by increasing the production of activated vitamin D. Vitamin D activation occurs in the kidney. PTH converts vitamin D to its active form (1,25-dihydroxy vitamin D). This activated form of vitamin D increases the absorption of calcium (as Ca2+ ions) by the intestine via calbindin.
The Bicarbonate Buffer System
This is the main extracellular buffer system which (also) provides a means for the necessary removal of the CO2 produced by tissue metabolism. The bicarbonate buffer system is the main buffer in blood plasma and consists of carbonic acid as proton donor and bicarbonate as proton acceptor :
H2CO3 = H+ + HCO3–
If there is a change in the ratio in favour of H2CO3, acidosis results.
This change can result from a decrease in [HCO3 − ] or from an increase in [H2CO3 ]
Most common forms of acidosis are metabolic or respiratory
Metabolic acidosis is caused by a decrease in [HCO3 − ] and occurs, for example, in uncontrolled diabetes with ketosis or as a result of starvation.
Respiratory acidosis is brought about when there is an obstruction to respiration (emphysema, asthma or pneumonia) or depression of respiration (toxic doses of morphine or other respiratory depressants)
Alkalosis results when [HCO3 − ] becomes favoured in the bicarbonate/carbonic acid ratio
Metabolic alkalosis occurs when the HCO3 − fraction increases with little or no concomitant change in H2CO3
Severe vomiting (loss of H+ as HCl) or ingestion of excessive amounts of sodium bicarbonate (bicarbonate of soda) can produce this condition
Respiratory alkalosis is induced by hyperventilation because an excessive removal of CO2 from the blood results in a decrease in [H2CO3 ]
Alkalosis can produce convulsive seizures in children and tetany, hysteria, prolonged hot baths or lack of O2 as high altitudes.
The pH of blood is maintained at 7.4 when the buffer ratio [HCO3 − ] / [ H2CO3] becomes 20
FAT-SOLUBLE VITAMINS
The fat-soluble vitamins, A, D, E, and K, are stored in the body for long periods of time and generally pose a greater risk for toxicity when consumed in excess than water-soluble vitamins.
VITAMIN A: RETINOL
Vitamin A, also called retinol, has many functions in the body. In addition to helping the eyes adjust to light changes, vitamin A plays an important role in bone growth, tooth development, reproduction, cell division, gene expression, and regulation of the immune system.
The skin, eyes, and mucous membranes of the mouth, nose, throat and lungs depend on vitamin A to remain moist. Vitamin A is also an important antioxidant that may play a role in the prevention of certain cancers.
One RAE equals 1 mcg of retinol or 12 mcg of beta-carotene. The Recommended Dietary Allowance (RDA) for vitamin A is 900 mcg/ day for adult males and 700 mcg/ day for adult females.
Vitamin A Deficiency
Vitamin A deficiency is rare, but the disease that results is known as xerophthalmia.
Other signs of possible vitamin A deficiency include decreased resistance to infections, faulty tooth development, and slower bone growth.
Vitamin A toxicity The Tolerable Upper Intake Level (UL) for adults is 3,000 mcg RAE.
VITAMIN D
Vitamin D plays a critical role in the body’s use of calcium and phosphorous. It works by increasing the amount of calcium absorbed from the small intestine, helping to form and maintain bones.
Vitamin D benefits the body by playing a role in immunity and controlling cell growth. Children especially need adequate amounts of vitamin D to develop strong bones and healthy teeth.
RDA From 12 months to age fifty, the RDA is set at 15 mcg.
20 mcg of cholecalciferol equals 800 International Units (IU), which is the recommendation for maintenance of healthy bone for adults over fifty.
Vitamin D Deficiency
Symptoms of vitamin D deficiency in growing children include rickets (long, soft bowed legs) and flattening of the back of the skull. Vitamin D deficiency in adults may result in osteomalacia (muscle and bone weakness), and osteoporosis (loss of bone mass).
Vitamin D toxicity
The Tolerable Upper Intake Level (UL) for vitamin D is set at 100 mcg for people 9 years of age and older. High doses of vitamin D supplements coupled with large amounts of fortified foods may cause accumulations in the liver and produce signs of poisoning.
VITAMIN E: TOCOPHEROL
Vitamin E benefits the body by acting as an antioxidant, and protecting vitamins A and C, red blood cells, and essential fatty acids from destruction.
RDA One milligram of alpha-tocopherol equals to 1.5 International Units (IU). RDA guidelines state that males and females over the age of 14 should receive 15 mcg of alpha-tocopherol per day.
Vitamin E Deficiency Vitamin E deficiency is rare. Cases of vitamin E deficiency usually only occur in premature infants and in those unable to absorb fats.
VITAMIN K
Vitamin K is naturally produced by the bacteria in the intestines, and plays an essential role in normal blood clotting, promoting bone health, and helping to produce proteins for blood, bones, and kidneys.
RDA
Males and females age 14 - 18: 75 mcg/day; Males and females age 19 and older: 90 mcg/day
Vitamin K Deficiency
Hemorrhage can occur due to sufficient amounts of vitamin K.
Vitamin K deficiency may appear in infants or in people who take anticoagulants, such as Coumadin (warfarin), or antibiotic drugs.
Newborn babies lack the intestinal bacteria to produce vitamin K and need a supplement for the first week.
Functions of lipids
1. They are the concentrated fuel reserve of the body (triacylglycerols).
2. Lipids are the constituents of membrane structure and regulate the membrane permeability (phospholipids and cholesterol).
3. They serve as a source of fat soluble vitamins (A, D, E and K).
4. Lipids are important as cellular metabolic regulators (steroid hormones and prostaglandins).
5. Lipids protect the internal organs, serve as insulating materials and give shape and smooth appearance to the body.