NEET MDS Lessons
Biochemistry
|
b Oxidation Pathway |
Fatty Acid Synthesis |
pathway location |
mitochondrial matrix |
cytosol |
acyl carriers (thiols) |
Coenzyme-A |
phosphopantetheine (ACP) & cysteine |
electron acceptors/donor |
FAD & NAD+ |
NADPH |
hydroxyl intermediate |
L |
D |
2-C product/donor |
acetyl-CoA |
malonyl-CoA (& acetyl-CoA) |
Vitamin B12: Cobalamin
Vitamin B12, also known as cobalamin, aids in the building of genetic material, production of normal red blood cells, and maintenance of the nervous system.
RDA The Recommended Dietary Allowance (RDA) for vitamin B12 is 2.4 mcg/day for adult males and females
Vitamin B12 Deficiency
Vitamin B12 deficiency most commonly affects strict vegetarians (those who eat no animal products), infants of vegan mothers, and the elderly. Symptoms of deficiency include anemia, fatigue, neurological disorders, and degeneration of nerves resulting in numbness and tingling.
Thyroid Hormones
Thyroid hormones (T4 and T3) are tyrosine-based hormones produced by the follicular cells of the thyroid gland and are regulated by TSH made by the thyrotropes of the anterior pituitary gland, are primarily responsible for regulation of metabolism. Iodine is necessary for the production of T3 (triiodothyronine) and T4 (thyroxine).
A deficiency of iodine leads to decreased production of T3 and T4, enlarges the thyroid tissue and will cause the disease known as goitre.
Thyroid hormones are transported by Thyroid-Binding Globulin
Thyroxine binding globulin (TBG), a glycoprotein binds T4 and T3 and has the capacity to bind 20 μg/dL of plasma.
Diseases
1. Hyperthyroidism (an example is Graves Disease) is the clinical syndrome caused by an excess of circulating free thyroxine, free triiodothyronine, or both. It is a common disorder that affects approximately 2% of women and 0.2% of men.
2 Hypothyroidism (an example is Hashimoto’s thyroiditis) is the case where there is a deficiency of thyroxine, triiodiothyronine, or both.
Function of Calcium
The major functions of calcium are
(a) Excitation and contraction of muscle fibres needs calcium. The active transport system utilizing calcium binding protein is called Calsequestrin. Calcium decreases neuromuscular irritability.
(b) Calcium is necessary for transmission of nerve impulse from presynaptic to postsynaptic region.
(c) Calcium is used as second messenger in system involving protein and inositol triphosphate.
(d) Secretion of insulin, parathyroid hormone, calcium etc, from the cells requires calcium.
(e) Calcium decrease the passage of serum through capillaries thus, calcium is clinically used to reduce allergic exudates.
(f) Calcium is also required for coagulation factors such as prothrombin.
(g) Calcium prolongs systole.
(h) Bone and teeth contains bulk quantity of calcium.
ISO-ENZYMES
Iso-enzymes are physically distinct forms of the same enzyme activity. Higher organisms have several physically distinct versions of a given enzyme, each of which catalyzes the same reaction. Isozymes arise through gene duplication and exhibit differences in properties such as sensitivity to particular regulatory factors or substrate affinity that adapts them to specific tissues or circumstances.
Isoforms of Lactate dehydrogenase is useful in diagnosis of myocardial infarction. While study of alkaline phosphatase isoforms are helpful in diagnosis of various bone disorder and obstructive liver diseases.
COENZYMES
Enzymes may be simple proteins, or complex enzymes.
A complex enzyme contains a non-protein part, called as prosthetic group (co-enzymes).
Coenzymes are heat stable low molecular weight organic compound. The combined form of protein and the co-enzyme are called as holo-enzyme. The heat labile or unstable part of the holo-enzyme is called as apo-enzyme. The apo-enzyme gives necessary three dimensional structures required for the enzymatic chemical reaction.
Co-enzymes are very essential for the biological activities of the enzyme.
Co-enzymes combine loosely with apo-enzyme and are released easily by dialysis. Most of the co-enzymes are derivatives of vitamin B complex
Amino Acid Biosynthesis
Glutamate and Aspartate
Glutamate and aspartate are synthesized from their widely distributed a-keto acid precursors by simple 1-step transamination reactions. The former catalyzed by glutamate dehydrogenase and the latter by aspartate aminotransferase, AST. Aspartate is also derived from asparagine through the action of asparaginase. The importance of glutamate as a common intracellular amino donor for transamination reactions and of aspartate as a precursor of ornithine for the urea cycle is described in the Nitrogen Metabolism page.
Alanine and the Glucose-Alanine Cycle
Role in protein synthesis,
Alanine is second only to glutamine in prominence as a circulating amino acid.. When alanine transfer from muscle to liver is coupled with glucose transport from liver back to muscle, the process is known as the glucose-alanine cycle. The key feature of the cycle is that in 1 molecule, alanine, peripheral tissue exports pyruvate and ammonia (which are potentially rate-limiting for metabolism) to the liver, where the carbon skeleton is recycled and most nitrogen eliminated.
There are 2 main pathways to production of muscle alanine: directly from protein degradation, and via the transamination of pyruvate by alanine transaminase, ALT (also referred to as serum glutamate-pyruvate transaminase, SGPT).
glutamate + pyruvate <-------> a-KG + alanine
Cysteine Biosynthesis
The sulfur for cysteine synthesis comes from the essential amino acid methionine. A condensation of ATP and methionine catalyzed by methionine adenosyltransferase yields S-adenosylmethionine
Tyrosine Biosynthesis
Tyrosine is produced in cells by hydroxylating the essential amino acid phenylalanine. This relationship is much like that between cysteine and methionine. Half of the phenylalanine required goes into the production of tyrosine; if the diet is rich in tyrosine itself, the requirements for phenylalanine are reduced by about 50%.
Phenylalanine hydroxylase is a mixed-function oxygenase: one atom of oxygen is incorporated into water and the other into the hydroxyl of tyrosine. The reductant is the tetrahydrofolate-related cofactor tetrahydrobiopterin, which is maintained in the reduced state by the NADH-dependent enzyme dihydropteridine reductase (DHPR).
Ornithine and Proline Biosynthesis
Glutamate is the precursor of both proline and ornithine, with glutamate semialdehyde being a branch point intermediate leading to one or the other of these 2 products. While ornithine is not one of the 20 amino acids used in protein synthesis, it plays a significant role as the acceptor of carbamoyl phosphate in the urea cycle
Serine Biosynthesis
The main pathway to serine starts with the glycolytic intermediate 3-phosphoglycerate. An NADH-linked dehydrogenase converts 3-phosphoglycerate into a keto acid, 3-phosphopyruvate, suitable for subsequent transamination. Aminotransferase activity with glutamate as a donor produces 3-phosphoserine, which is converted to serine by phosphoserine phosphatase.
Glycine Biosynthesis
The main pathway to glycine is a 1-step reaction catalyzed by serine hydroxymethyltransferase. This reaction involves the transfer of the hydroxymethyl group from serine to the cofactor tetrahydrofolate (THF), producing glycine and N5,N10-methylene-THF. Glycine produced from serine or from the diet can also be oxidized by glycine cleavage complex, GCC, to yield a second equivalent of N5,N10-methylene-tetrahydrofolate as well as ammonia and CO2.
Glycine is involved in many anabolic reactions other than protein synthesis including the synthesis of purine nucleotides, heme, glutathione, creatine and serine.
Aspartate/Asparagine and Glutamate/Glutamine Biosynthesis
Glutamate is synthesized by the reductive amination of a-ketoglutarate catalyzed by glutamate dehydrogenase; it is thus a nitrogen-fixing reaction. In addition, glutamate arises by aminotransferase reactions, with the amino nitrogen being donated by a number of different amino acids. Thus, glutamate is a general collector of amino nitrogen.
Aspartate is formed in a transamintion reaction catalyzed by aspartate transaminase, AST. This reaction uses the aspartate a-keto acid analog, oxaloacetate, and glutamate as the amino donor. Aspartate can also be formed by deamination of asparagine catalyzed by asparaginase.
Asparagine synthetase and glutamine synthetase, catalyze the production of asparagine and glutamine from their respective a-amino acids. Glutamine is produced from glutamate by the direct incorporation of ammonia; and this can be considered another nitrogen fixing reaction. Asparagine, however, is formed by an amidotransferase reaction.
Aminotransferase reactions are readily reversible. The direction of any individual transamination depends principally on the concentration ratio of reactants and products. By contrast, transamidation reactions, which are dependent on ATP, are considered irreversible. As a consequence, the degradation of asparagine and glutamine take place by a hydrolytic pathway rather than by a reversal of the pathway by which they were formed. As indicated above, asparagine can be degraded to aspartate