Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Biochemistry

FLUORIDE

The safe limit of fluorine is about 1PPM in water. But excess of fluoride causes Flourosis

Flourosis is more dangerous than caries. When Fluoride content is more than 2 PPM, it will cause chronic intestinal upset, gastroenteritis, loss of weight, osteosclerosis, stratification and discoloration of teeth

STEROIDS
Steroids  are the compounds containing a cyclic steroid nucleus  (or ring) namely cyclopentanoperhydrophenanthrene (CPPP).It consists of a phenanthrene  nucleus (rings A, B and C) to which a cyclopentane ring (D)  is attached.

Steroids  are the compounds containing a cyclic steroid nucleus  (or ring) namely cyclopentanoperhydrophenanthrene (CPPP).It consists of a phenanthrene  nucleus (rings A, B and C) to which a cyclopentane ring (D)  is attached.

There are several steroids in the biological system. These include cholesterol, bile acids, vitamin D, sex hormones, adrenocortical hormones,sitosterols, cardiac glycosides and alkaloids

Amino acids

Proteins are linear polymers of amino acids. Participate in virtually every biological process. Perform diverse functions:
       1. Enzymes: catalyze all reactions in living organisms
       2. Storage and transport
       3. Structural
       4. Mechanical work ( flagella, muscles, separation of chromosomes)
       5. Decoding information (translation, transcription, DNA replication)
       6. Cell-signalling (hormones and receptors)
       7. Defence (antibodies)

Functions of  lipids

1. They are the concentrated fuel reserve of the body  (triacylglycerols).

2. Lipids are the constituents of membrane structure and regulate the membrane permeability (phospholipids  and cholesterol).

3. They serve as a source of fat soluble vitamins (A, D, E and K).

4. Lipids are important as cellular metabolic regulators (steroid  hormones and prostaglandins).

5. Lipids protect the internal organs, serve as insulating materials and give shape and smooth appearance to the body.

Sphingosine is an amino alcohol present in sphingomyelins (sphingophospholipids).  They do not contain glycerol at all.

Sphingosine is attached by an amide linkage to a fatty acid to produce ceramide. The alcohol group of sphingosine is bound to phosphorylcholine in sphingomyelin structure. .

Sphingomyelins are important constituents of myelin and are found in good quantity in brain and nervous tissues.

Sugar derivatives

Sugar alcohol - lacks an aldehyde or ketone. An example is ribitol.

Sugar acid - the aldehyde at C1, or the hydroxyl on the terminal carbon, is oxidized to a carboxylic acid. Examples are gluconic acid and glucuronic acid

Amino sugar - an amino group substitutes for one of the hydroxyls. An example is glucosamine. The amino group may be acetylated.

N-acetylneuraminate, (N-acetylneuraminic acid, also called sialic acid) is often found as a terminal residue of oligosaccharide chains of glycoproteins. Sialic acid imparts negative charge to glycoproteins, because its carboxyl group tends to dissociate a proton at physiological pH.

Glycosidic bonds: The anomeric hydroxyl group and a hydroxyl group of another sugar or some other compound can join together, splitting out water to form a glycosidic bond.

R-OH + HO-R'   → R-O-R' + H2O

Disaccharides: Maltose, a cleavage product of starch, is a disaccharide with an α (1→4) glycosidic linkage between the C1 hydroxyl of one glucose and the C4 hydroxyl of a second glucose. Maltose is the α anomer, because the O at C1  points down from the ring.

Cellobiose, a product of cellulose breakdown, is the otherwise equivalent β anomer.  The configuration at the anomeric C1 is β (O points up from the ring). The β(1→4) glycosidic linkage is represented as a "zig-zag" line, but one glucose residue is actually flipped over relative to the other.

 

Other disaccharides

  • Sucrose, common table sugar, has a glycosidic bond linking the anomeric hydroxyls of glucose and fructose. Because the configuration at the anomeric carbon of glucose is α (O points down from the ring), the linkage is designated α (1→2). The full name is α -D-glucopyranosyl-(1→2) β -D- fructopyranose.
  • Lactose, milk sugar, is composed of glucose and galactose with β (→4) linkage → the anomeric hydroxyl of galactose. Its full name is β -D-galactopyranosyl-(1→)- α -D-glucopyranose

Polysaccharides:

Plants store glucose as amylose or amylopectin, glucose polymers collectively called starch. Glucose storage in polymeric form minimizes osmotic effects

Amylose is a glucose polymer with α (1→4) glycosidic linkages, as represented above. The end of the polysaccharide with an anomeric carbon (C1) that is not involved in a glycosidic bond is called the reducing end

Amylopectin is a glucose polymer with mainly α (1→4) linkages, but it also has branches formed by α (1→6) linkages. The branches are generally longer than shown above. The branches produce a compact structure, and provide multiple chain ends at which enzymatic cleavage of the polymer can occur. 

Glycogen, the glucose storage polymer in animals, is similar in structure to amylopectin. But glycogen has more α (1→6) branches. The highly branched structure permits rapid release of glucose from glycogen stores, e.g., in muscle cells during exercise. The ability to rapidly mobilize glucose is more essential to animals than to plants.

 

Cellulose, a major constituent of plant cell walls, consists of long linear chains of glucose, with β (1→4) linkages. Every other glucose in cellulose is flipped over, due to the β linkages. This promotes intrachain and interchain hydrogen bonds, as well as van der Waals interactions, that cause cellulose chains to be straight and rigid, and pack with a crystalline arrangement in thick bundles called microfibrils.

Glycosaminoglycans (mucopolysaccharides) are polymers of repeating disaccharides. Within the disaccharides, the sugars tend to be modified, with acidic groups, amino groups, sulfated hydroxyl and amino groups, etc. Glycosaminoglycans tend to be negatively charged, because of the prevalence of acidic groups.

Hyaluronate is a glycosaminoglycan with a repeating disaccharide consisting of two glucose derivatives, glucuronate (glucuronic acid) and N-acetylglucosamine. The glycosidic linkages are β(1→3) and β(1→4).

When covalently linked to specific core proteins, glycosaminoglycans form complexes called proteoglycans. Some proteoglycans of the extracellular matrix in turn link non-covalently to hyaluronate via protein domains called link modules. For example, in cartilage multiple copies of the aggrecan proteoglycan bind to an extended hyaluronate backbone to form a large complex Versican, another proteoglycan that binds to hyaluronate, is in the extracellular matrix of loose connective tissues.

Heparan sulfate is initially synthesized on a membrane-embedded core protein as a polymer of alternating glucuronate and N-acetylglucosamine residues. Later, in segments of the polymer, glucuronate residues may be converted to a sulfated sugar called iduronic acid, while N-acetylglucosamine residues may be deacetylated and/or sulfated

Heparin, a glycosaminoglycan found in granules of mast cells, has a structure similar to that of heparan sulfates, but is relatively highly sulfated.

Some cell surface heparan sulfate glycosaminoglycans remain covalently linked to core proteins embedded in the plasma membrane. Proteins involved in signaling and adhesion at the cell surface have been identified that recognize and bind segments of heparan sulfate chains having particular patterns of sulfation

Lectins are glycoproteins that recognize and bind to specific oligosaccharides.

  • Concanavalin A and wheat germ agglutinin are plant lectins that have been useful research tools
  • Mannan-binding lectin (MBL) is a glycoprotein found in blood plasma. It associates with cell surface carbohydrates of disease-causing microorganisms, promoting phagocytosis of these organisms as part of the immune response.
  • Selectins are integral proteins of the plasma membrane with lectin-like domains that protrude on the outer surface of mammalian cells. Selectins participate in cell-cell recognition and binding.

Classification of Fatty Acids and Triglycerides

 

Short-chain: 2-4 carbon atoms

Medium-chain: 6-12 carbon atoms

Long-chain: 14-20 carbon atoms

Very long-chain: >20 carbon atoms

 

• are usually in esterified form as major components of other lipids

 

 

A16-carbon fatty acid, with one cis double bond between carbon atoms 9 and 10 may be represented as 16:1 cisD9.

 

Double bonds in fatty acids usually have the cis configuration. Most naturally occurring fatty acids have an even number of carbon atoms

 

Examples of fatty acids

18:0

stearic acid

18:1 cisD9    

oleic acid

18:2 cisD9,12

linoleic acid

18:3 cisD9,12,15  

linonenic acid 

20:4 cisD5,8,11,14   

arachidonic acid

 

 

There is free rotation about C-C bonds in the fatty acid hydrocarbon, except where there is a double bond. Each cis double bond causes a kink in the chain,

Explore by Exams