NEET MDS Lessons
Biochemistry
Thiamin: Vitamin B1
Thiamin, or vitamin B1, helps to release energy from foods, promotes normal appetite, and is important in maintaining proper nervous system function.
RDA (Required Daily allowance) Males: 1.2 mg/day; Females: 1.1 mg/day
Thiamin Deficiency
Symptoms of thiamin deficiency include: mental confusion, muscle weakness, wasting, water retention (edema), impaired growth, and the disease known as beriberi.
Sugar derivatives
Sugar alcohol - lacks an aldehyde or ketone. An example is ribitol.
Sugar acid - the aldehyde at C1, or the hydroxyl on the terminal carbon, is oxidized to a carboxylic acid. Examples are gluconic acid and glucuronic acid
Amino sugar - an amino group substitutes for one of the hydroxyls. An example is glucosamine. The amino group may be acetylated.
N-acetylneuraminate, (N-acetylneuraminic acid, also called sialic acid) is often found as a terminal residue of oligosaccharide chains of glycoproteins. Sialic acid imparts negative charge to glycoproteins, because its carboxyl group tends to dissociate a proton at physiological pH.
Glycosidic bonds: The anomeric hydroxyl group and a hydroxyl group of another sugar or some other compound can join together, splitting out water to form a glycosidic bond.
R-OH + HO-R' → R-O-R' + H2O
Disaccharides: Maltose, a cleavage product of starch, is a disaccharide with an α (1→4) glycosidic linkage between the C1 hydroxyl of one glucose and the C4 hydroxyl of a second glucose. Maltose is the α anomer, because the O at C1 points down from the ring.
Cellobiose, a product of cellulose breakdown, is the otherwise equivalent β anomer. The configuration at the anomeric C1 is β (O points up from the ring). The β(1→4) glycosidic linkage is represented as a "zig-zag" line, but one glucose residue is actually flipped over relative to the other.
Other disaccharides
- Sucrose, common table sugar, has a glycosidic bond linking the anomeric hydroxyls of glucose and fructose. Because the configuration at the anomeric carbon of glucose is α (O points down from the ring), the linkage is designated α (1→2). The full name is α -D-glucopyranosyl-(1→2) β -D- fructopyranose.
- Lactose, milk sugar, is composed of glucose and galactose with β (→4) linkage → the anomeric hydroxyl of galactose. Its full name is β -D-galactopyranosyl-(1→)- α -D-glucopyranose
Polysaccharides:
Plants store glucose as amylose or amylopectin, glucose polymers collectively called starch. Glucose storage in polymeric form minimizes osmotic effects
Amylose is a glucose polymer with α (1→4) glycosidic linkages, as represented above. The end of the polysaccharide with an anomeric carbon (C1) that is not involved in a glycosidic bond is called the reducing end
Amylopectin is a glucose polymer with mainly α (1→4) linkages, but it also has branches formed by α (1→6) linkages. The branches are generally longer than shown above. The branches produce a compact structure, and provide multiple chain ends at which enzymatic cleavage of the polymer can occur.
Glycogen, the glucose storage polymer in animals, is similar in structure to amylopectin. But glycogen has more α (1→6) branches. The highly branched structure permits rapid release of glucose from glycogen stores, e.g., in muscle cells during exercise. The ability to rapidly mobilize glucose is more essential to animals than to plants.
Cellulose, a major constituent of plant cell walls, consists of long linear chains of glucose, with β (1→4) linkages. Every other glucose in cellulose is flipped over, due to the β linkages. This promotes intrachain and interchain hydrogen bonds, as well as van der Waals interactions, that cause cellulose chains to be straight and rigid, and pack with a crystalline arrangement in thick bundles called microfibrils.
Glycosaminoglycans (mucopolysaccharides) are polymers of repeating disaccharides. Within the disaccharides, the sugars tend to be modified, with acidic groups, amino groups, sulfated hydroxyl and amino groups, etc. Glycosaminoglycans tend to be negatively charged, because of the prevalence of acidic groups.
Hyaluronate is a glycosaminoglycan with a repeating disaccharide consisting of two glucose derivatives, glucuronate (glucuronic acid) and N-acetylglucosamine. The glycosidic linkages are β(1→3) and β(1→4).
When covalently linked to specific core proteins, glycosaminoglycans form complexes called proteoglycans. Some proteoglycans of the extracellular matrix in turn link non-covalently to hyaluronate via protein domains called link modules. For example, in cartilage multiple copies of the aggrecan proteoglycan bind to an extended hyaluronate backbone to form a large complex Versican, another proteoglycan that binds to hyaluronate, is in the extracellular matrix of loose connective tissues.
Heparan sulfate is initially synthesized on a membrane-embedded core protein as a polymer of alternating glucuronate and N-acetylglucosamine residues. Later, in segments of the polymer, glucuronate residues may be converted to a sulfated sugar called iduronic acid, while N-acetylglucosamine residues may be deacetylated and/or sulfated
Heparin, a glycosaminoglycan found in granules of mast cells, has a structure similar to that of heparan sulfates, but is relatively highly sulfated.
Some cell surface heparan sulfate glycosaminoglycans remain covalently linked to core proteins embedded in the plasma membrane. Proteins involved in signaling and adhesion at the cell surface have been identified that recognize and bind segments of heparan sulfate chains having particular patterns of sulfation
Lectins are glycoproteins that recognize and bind to specific oligosaccharides.
- Concanavalin A and wheat germ agglutinin are plant lectins that have been useful research tools
- Mannan-binding lectin (MBL) is a glycoprotein found in blood plasma. It associates with cell surface carbohydrates of disease-causing microorganisms, promoting phagocytosis of these organisms as part of the immune response.
- Selectins are integral proteins of the plasma membrane with lectin-like domains that protrude on the outer surface of mammalian cells. Selectins participate in cell-cell recognition and binding.
During fasting or carbohydrate starvation, oxaloacetate is depleted in liver because it is used for gluconeogenesis. This impedes entry of acetyl-CoA into Krebs cycle. Acetyl-CoA then is converted in liver mitochondria to ketone bodies, acetoacetate and b-hydroxybutyrate.
Three enzymes are involved in synthesis of ketone bodies:
b-Ketothiolase. The final step of the b-oxidation pathway runs backwards, condensing 2 acetyl-CoA to produce acetoacetyl-CoA, with release of one CoA.
HMG-CoA Synthase catalyzes condensation of a third acetate moiety (from acetyl-CoA) with acetoacetyl-CoA to form hydroxymethylglutaryl-CoA (HMG-CoA).
HMG-CoA Lyase cleaves HMG-CoA to yield acetoacetate plus acetyl-CoA.
b-Hydroxybutyrate Dehydrogenase catalyzes inter-conversion of the ketone bodies acetoacetate and b-hydroxybutyrate.
Ketone bodies are transported in the blood to other tissue cells, where they are converted back to acetyl-CoA for catabolism in Krebs cycle
Glycogenolysis
Breakdown of glycogen to glucose is called glycogenolysis. The Breakdown of glycogen takes place in liver and muscle. In Liver , the end product of glycodgen breakdown is glucose where as in muscles the end product is Lactic acid Under the combined action of Phosphorylase (breaks only –α-(1,4) linkage )and Debranching enzymes (breaks only α-(1,6) linkage )glycogen is broken down to glucose.
VITAMIN C: ASCORBIC ACID, ASCORBATE
Vitamin C benefits the body by holding cells together through collagen synthesis; collagen is a connective tissue that holds muscles, bones, and other tissues together. Vitamin C also aids in wound healing, bone and tooth formation, strengthening blood vessel walls, improving immune system function, increasing absorption and utilization of iron, and acting as an antioxidant.
RDA The Recommended Dietary Allowance (RDA) for Vitamin C is 90 mg/day for adult males and 75 mg/day for adult females
Vitamin C Deficiency
Severe vitamin C deficiency result in the disease known as scurvy, causing a loss of collagen strength throughout the body. Loss of collagen results in loose teeth, bleeding and swollen gums, and improper wound healing.
BIOLOGICAL BUFFER SYSTEMS
Cells and organisms maintain a specific and constant cytosolic pH, keeping biomolecules in their optimal ionic state, usually near pH 7. In multicelled organisms, the pH of the extracellular fluids (blood, for example) is also tightly regulated. Constancy of pH is achieved primarily by biological buffers : mixtures of weak acids and their conjugate bases
Body fluids and their principal buffers
Body fluids Principal buffers
Extracellular fluids {Biocarbonate buffer Protein buffer }
Intracellular fluids {Phosphate buffer, Protein }
Erythrocytes {Hemoglobin buffer}
Insulin
Insulin is a polypeptide hormone synthesized in the pancreas by β-cells, which construct a single chain molecule called proinsulin.
Insulin, secreted by the β-cells of the pancreas in response to rising blood glucose levels, is a signal that glucose is abundant.
Insulin binds to a specific receptor on the cell surface and exerts its metabolic effect by a signaling pathway that involves a receptor tyrosine kinase phosphorylation cascade.
The pancreas secretes insulin or glucagon in response to changes in blood glucose.
Each cell type of the islets produces a single hormone: α-cells produce glucagon; β-cells, insulin; and δ-cells, somatostatin.
Insulin secretion
When blood glucose rises, GLUT2 transporters carry glucose into the b-cells, where it is immediately converted to glucose 6-phosphate by hexokinase IV (glucokinase) and enters glycolysis. The increased rate of glucose catabolism raises [ATP], causing the closing of ATP-gated K+ channels in the plasma membrane. Reduced efflux of K+ depolarizes the membrane, thereby opening voltage-sensitive Ca2+ channels in the plasma membrane. The resulting influx of Ca2+ triggers the release of insulin by exocytosis.
Insulin lowers blood glucose by stimulating glucose uptake by the tissues; the reduced blood glucose is detected by the β-cell as a diminished flux through the hexokinase reaction; this slows or stops the release of insulin. This feedback regulation holds blood glucose concentration nearly constant despite large fluctuations in dietary intake.
Insulin counters high blood glucose
Insulin stimulates glucose uptake by muscle and adipose tissue, where the glucose is converted to glucose 6-phosphate. In the liver, insulin also activates glycogen synthase and inactivates glycogen phosphorylase, so that much of the glucose 6-phosphate is channelled into glycogen.
Diabetes mellitus, caused by a deficiency in the secretion or action of insulin, is a relatively common disease. There are two major clinical classes of diabetes mellitus: type I diabetes, or insulin-dependent diabetes mellitus (IDDM), and type II diabetes, or non-insulin-dependent diabetes mellitus (NIDDM), also called insulin-resistant diabetes. In type I diabetes, the disease begins early in life and quickly becomes severe. IDDM requires insulin therapy and careful, lifelong control of the balance between dietary intake and insulin dose.
Characteristic symptoms of type I (and type II) diabetes are excessive thirst and frequent urination (polyuria), leading to the intake of large volumes of water (polydipsia)
Type II diabetes is slow to develop (typically in older, obese individuals), and the symptoms are milder.