Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

Abnormalities

There are a number of tooth abnormalities relating to development.

Anodontia is a complete lack of tooth development, and hypodontia is a lack of some tooth development. Anodontia is rare, most often occurring in a condition called hipohidrotic ectodermal dysplasia, while hypodontia is one of the most common developmental abnormalities, affecting 3.5–8.0% of the population (not including third molars). The absence of third molars is very common, occurring in 20–23% of the population, followed in prevalence by the second premolar and lateral incisor. Hypodontia is often associated with the absence of a dental lamina, which is vulnerable to environmental forces, such as infection and chemotherapy medications, and is also associated with many syndromes, such as Down syndrome and Crouzon syndrome.

Hyperdontia is the development of extraneous teeth. It occurs in 1–3% of Caucasians and is more frequent in Asians. About 86% of these cases involve a single extra tooth in the mouth, most commonly found in the maxilla, where the incisors are located. Hyperdontia is believed to be associated with an excess of dental lamina.

Dilaceration is an abnormal bend found on a tooth, and is nearly always associated with trauma that moves the developing tooth bud. As a tooth is forming, a force can move the tooth from its original position, leaving the rest of the tooth to form at an abnormal angle. Cysts or tumors adjacent to a tooth bud are forces known to cause dilaceration, as are primary (baby) teeth pushed upward by trauma into the gingiva where it moves the tooth bud of the permanent tooth.

Regional odontodysplasia is rare, but is most likely to occur in the maxilla and anterior teeth. The cause is unknown; a number of causes have been postulated, including a disturbance in the neural crest cells, infection, radiation therapy, and a decrease in vascular supply (the most widely held hypothesis).Teeth affected by regional odontodysplasia never erupt into the mouth, have small crowns, are yellow-brown, and have irregular shapes. The appearance of these teeth in radiographs is translucent and "wispy," resulting in the nickname "ghost teeth"

INNERVATION OF THE DENTIN-PULP COMPLEX

  1. Dentine Pulp
  2. Dentin
  3. Nerve Fibre Bundle
  4. Nerve fibres

The nerve bundles entering the tooth pulp consist principally of sensory afferent fibers from the trigeminal nerve and sympathetic branches from the superior cervical ganglion. There are non-myelinated (C fibers) and myelinated (less than non, A-delta, A-beta) fibers. Some nerve endings terminate on or in association with the odontoblasts and others in the predentinal tubules of the crown. Few fibers are found among odontoblasts of the root.
In the cell-free zone one can find the plexus of Raschkow.

HISTOLOGY OF SALIVARY GLANDS

Parotid: so-called watery serous saliva rich in amylase
Submandibular gland: more mucinous
Sublingual: viscous saliva

Parotid Gland:  The parotid is a serous secreting gland.

There are also fat cells in the parotid.

 

Submandibular Gland

This gland is serous and mucous secreting.

There are serous demilunes

This gland is more serous than mucous

Also fat cells

 

Sublingual Gland

Serous and mucous secreting

Serous cells in the form of demilunes on the mucous acini.

more mucous than serous cells

Minor Salivary Glands

Minor salivary glands are not found within gingiva and anterior part of the hard palate
Serous minor glands=von Ebner below the sulci of the circumvallate and folliate papillae of the tongue; palatine, glossopalatine glands are pure mucus; some lingual glands are also pure mucus

Functions

Protection: lubricant (glycoprotein); barrier against noxious stimuli; microbial toxins and minor traumas; washing non-adherent and acellular debris; calcium-binding proteins: formation of salivary pellicle
Buffering: bacteria require specific pH conditions; plaque microorganisms produce acids from sugars; phosphate ions and bicarbonate
Digestion: neutralizes esophageal contents, dilutes gastric chyme; forms food bolus; brakes starch
Taste: permits recognition of noxious substances; protein gustin necessary for growth and maturation of taste buds
Antimicrobial: lysozyme hydrolyzes cell walls of some bacteria; lactoferrin binds free iron and deprives bacteria of this essential element; IgA agglutinates microorganisms
Maintenance of tooth integrity: calcium and phosphate ions; ionic exchange with tooth surface
Tissue repair: bleeding time of oral tissues shorter than other tissues; resulting clot less solid than normal; remineralization

MANDIBULAR FIRST MOLAR

It is the first permanent tooth to erupt.

Facial Surface:- The lower first permanent molar has the widest mesiodistal diameter of all of the molar teeth. Three cusps cusps separated by developmental grooves make on the occlusal outline The mesiobuccal cusp is usually the widest of the cusps. The mesiobuccal cusp is generally considered the largest of the five cusps. The distal root is usually less curved than the mesial root.

Lingual: Three cusps make up the occlusal profile in this view: the mesiolingual, the distolingual, and the distal cusp which is somewhat lower in profile. The mesiobuccal cusp is usually the widest and highest of the three. A short lingual developmental groove separates the two lingual cusps

Proximal: The distinctive height of curvature seen in the cervical third of the buccal surface is called the cervical ridge. The mesial surface may be flat or concave in its cervical third . It is highly convex in its middle and occlusal thirds. The occlusal profile is marked by the mesiobuccal cusp, mesiolingual cusp, and the mesial marginal ridge that connects them. The mesial root is the broadest buccolingually of any of the lower molar roots. The distal surface of the crown is narrower buccolingually than the mesial surface. Three cusps are seen from the distal aspect: the distobuccal cusp, the distal cusp, and the distolingual cusp.

Occlusal There are five cusps. Of them, the mesiobuccal cusp is the largest, the distal cusp is the smallest. The two buccal grooves and the single lingual groove form the "Y" patern distinctive for this tooth

Roots :-The tooth has two roots, a mesial and a distal.

Contact Points; The mesial contact is centered buccolingually just below the marginal ridge. The distal contact is centered over the distal root, but is buccal to the center point of the distal marginal ridge.

Roots: Lower molars have mesial and distal roots. In the first, molar, the mesial root is the largest. It has a distal curvature. The distal root has little curvature and projects distally.

 

TEMPOROMANDIBULAR JOINT

There are three kind of joints:
 

·  Fibrous
Two bones connected with fibrous tissue
Examples
suture (little or no movement)
gomphosis (tooth - PDL - bone)
syndesmosis (fibula & tibia, radius and ulna; interosseous ligament)

·  Cartilagenous
Two subtypes:
2a) primary: bone<--->cartilage (costochondral joint)
2b) secondary: bone<-->cartilage<-->FT<-->cartilage<--> bone (pubic symphysis)

·  Synovial
Two bones
; each articular surface covered with hyaline cartilage in most cases
The bones are united with a capsule (joint cavity)
In the capsule there is presence of synovial fluid
The capsule is lined by a synovial membrane
In many synovial joints there maybe an articular disk
Synovial joints are characterized by the presence of ligaments
Synovial joints are classified according to the number of axes of bone movement: uniaxial, biaxial, multiaxial

the shapes of articulating surfaces: planar, ginglymoid (=hinged), pivot, condyloid

The movement of the joints is controlled by muscles

The temporomandibular joint is a synovial, sliding-ginglymoid joint (humans)

Embryology of the TMJ
Primary TMJ: Meckel's cartilage --> malleus & incal cartilage. It lasts for 4 months.
Secondary TMJ: Starts developing around the third month of gestation
Two blastemas (temporal and condylar); condylar grows toward the temporal (temporal appears and ossifies first)
Formation of two cavities: inferior and upper
Appearance of disk
Bones: glenoid fossa (temporal bone) and condyle (mandible)
 

MORPHOLOGY OF THE DECIDUOUS TEETH

 

Deciduous Anterior Teeth.

 -The primary anteriors are morphologically similar to the permanent anteriors.

-The incisors are relatively simple in their morphology.

-The roots are long and narrow.

-When compared to the permanent incisors, the mesiodistal dimension is relatively larger when compared to axial crown length

-At the time of eruption, mamelons are not present in deciduous incisors

-They are narrower mesiodistally than their permanent successors.

Gingiva

The connection between the gingiva and the tooth is called the dentogingival junction. This junction has three epithelial types: gingival, sulcular, and junctional epithelium. These three types form from a mass of epithelial cells known as the epithelial cuff between the tooth and the mouth.

Much about gingival formation is not fully understood, but it is known that hemidesmosomes form between the gingival epithelium and the tooth and are responsible for the primary epithelial attachment. Hemidesmosomes provide anchorage between cells through small filament-like structures provided by the remnants of ameloblasts. Once this occurs, junctional epithelium forms from reduced enamel epithelium, one of the products of the enamel organ, and divides rapidly. This results in the perpetually increasing size of the junctional epithelial layer and the isolation of the remenants of ameloblasts from any source of nutrition. As the ameloblasts degenerate, a gingival sulcus is created.

Explore by Exams