NEET MDS Lessons
Dental Anatomy
Formation and Eruption of Deciduous Teeth.
-Calcification begins during the fourth month of fetal life. By the end of the sixth month, all of the deciduous teeth have begun calcification.
-By the time the deciduous teeth have fully erupted (two to two and one half years of age), cacification of the crowns of permanent teeth is under way. First permanent molars have begun cacification at the time of birth. -Here are some things to know about eruption patterns:
(1) Teeth tend to erupt in pairs.
(2) Usually, lower deciduous teeth erupt first. Congenitally missing deciduous teeth is infrequent. Usually, the lower deciduous central incisors are thefirst to erupt thus initiating the deciduous dentition. The appearance of the deciduous second molars completes the deciduous dentition by 2 to 2 1/2 years of age.
- Deciduous teeth shed earlier and permanent teeth erupt earlier in girls.
- The orderly pattern of eruption and their orderly replacement by permanent teeth is important.
- order for eruption of the deciduous teeth is as follows:
(1) Central incisor.........Lower 6 ½ months, Upper 7 ½ months
(2) Lateral incisor.........Lower 7 months, Upper 8 months
(3) First deciduous molar...Lower 12-16 months, Upper 12-16 months
(4) Deciduous canine........Lower 16-20 months, Upper 16-20 months
(5) Second deciduous molar..Lower 20-30 months, Upper 20-30 months
FORMATION OF THE PERMANENT DENTITION
Twenty deciduous tooth buds are formed initially.
Proliferative activity of the dental lamina during the bell stage that leads to formation of permanent tooth buds (cap stage) lingual of each deciduous tooth germ.
Molars have no predecessors; they are formed by posterior proliferation of the dental lamina.
HARD TISSUE FORMATION
Hard tissue formation starts at the late stages of the bell stage.
Differentiatioin of cells into odontoblasts and ameloblasts.
The cells of the inner dental epithelium will become ameloblasts.
The cells of the dental papilla opposite to the inner dental epithelium will become odontoblasts.
Dentin is formed before enamel.
Dentin initiates the formation of enamel.
ROOT FORMATION
The root of the tooth is composed by dentin and cementum.
Dentinogenesis is initiated by the odontoblasts.
Odontoblasts are formed as epithelial cells continue to proliferate from the cervical loop as a double layer of cells known as Hertwig's root sheath.
TOOTH SHAPE
The shape of the crowns results from the interaction of inner dental epithelium and the dental papilla.
The cells of the inner dental epithelium have a programmed proliferation.
This internal program determines the tooth form.
The fate of the dental lamina
Rests of Serres
The rest of Serres are rests of the dental lamina identified in the gingival soft tissues.
They are round to ovoid aggregates of epithelial cells that have clear cytoplasm (glucogen rich).
They result from early breakup of the dental lamina during bell stage.
Rests of Malassez
The rests of Malassez result from breakup of the Hertwig's root sheath during root formation.
They can be identified in the periodontal ligament and are responsible for the development of radicular cysts.
Dentinogenesis
Dentin formation, known as dentinogenesis, is the first identifiable feature in the crown stage of tooth development. The formation of dentin must always occur before the formation of enamel. The different stages of dentin formation result in different types of dentin: mantle dentin, primary dentin, secondary dentin, and tertiary dentin.
Odontoblasts, the dentin-forming cells, differentiate from cells of the dental papilla. They begin secreting an organic matrix around the area directly adjacent to the inner enamel epithelium, closest to the area of the future cusp of a tooth. The organic matrix contains collagen fibers with large diameters (0.1-0.2 μm in diameter). The odontoblasts begin to move toward the center of the tooth, forming an extension called the odontoblast process. Thus, dentin formation proceeds toward the inside of the tooth. The odontoblast process causes the secretion of hydroxyapatite crystals and mineralization of the matrix. This area of mineralization is known as mantle dentin and is a layer usually about 150 μm thick.
Whereas mantle dentin forms from the preexisting ground substance of the dental papilla, primary dentin forms through a different process. Odontoblasts increase in size, eliminating the availability of any extracellular resources to contribute to an organic matrix for mineralization. Additionally, the larger odontoblasts cause collagen to be secreted in smaller amounts, which results in more tightly arranged, heterogenous nucleation that is used for mineralization. Other materials (such as lipids, phosphoproteins, and phospholipids) are also secreted.
Secondary dentin is formed after root formation is finished and occurs at a much slower rate. It is not formed at a uniform rate along the tooth, but instead forms faster along sections closer to the crown of a tooth. This development continues throughout life and accounts for the smaller areas of pulp found in older individuals. Tertiary dentin, also known as reparative dentin, forms in reaction to stimuli, such as attrition or dental caries.
The dentin in the root of a tooth forms only after the presence of Hertwig's epithelial root sheath (HERS), near the cervical loop of the enamel organ. Root dentin is considered different than dentin found in the crown of the tooth (known as coronal dentin) because of the different orientation of collagen fibers, the decrease of phosphoryn levels, and the less amount of mineralization.
SURFACES OF THE TEETH
Facial, Mesial, Distal, Lingual, and Incisal Surfaces
- The facial is the surface of a tooth that "faces" toward the lips or cheeks. When there is a requirement to be more specific, terms like labial and buccal are used. The labial is the surface of an anterior tooth that faces toward the lips. The buccal is the surface of a posterior tooth that faces toward the cheek.
- The mesial is the proximal surface closest to the midline of the arch. The distal is the opposite of mesial. The distal is the proximal surface oriented away from the midline of the arch.
- The lingual is the surface of an anterior or posterior tooth that faces toward the tongue. Incisal edges are narrow cutting edges found only in the anterior teeth (incisors). Incisors have one incisal edge
- Proximal Surfaces
A tooth has two proximal surfaces, one that is oriented toward the midline of the dental arch (mesial) and another that is oriented away from the midline of the arch (distal).
Deciduous dentition period.
-The deciduous teeth start to erupt at the age of six months and the deciduous dentition is complete by the age of approximately two and one half years of age.
-The jaws continue to increase in size at all points until about age one year.
-After this, growth of the arches is lengthening of the arches at their posterior (distal) ends. Also, there is slightly more forward growth of the mandible than the maxilla.
1. Many early developmental events take place.
-The tooth buds anticipate the ultimate occlusal pattern.
-Mandibular teeth tend to erupt first. The pattern for the deciduous incisors is usually in this distinctive order:
(1) mandibular central
(2) maxillary central incisors
(3) then all four lateral incisors.
-By one year, the deciduous molars begin to erupt.
-The eruption pattern for the deciduous dentition as a whole is:
(1) central incisor
(2) lateral incisor
(3) deciduous first molar
(4) then the canine
(5) then finally the second molar.
-Eruption times can be variable.
2. Occlusal changes in the deciduous dentition.
-The overjet tends to diminish with age. Wear and mandibular growth are a factor in this process.
-The overbite often diminishes with the teeth being worn to a flat plane occlusion.
-Spacing of the incisors in anticipation of the soon-to-erupt permanent incisors appears late. Permanent anterior teeth (incisors and canines) are wider mesiodistally than deciduous anterior teeth. In contrast, the deciduous molar are wider mesiodistally that the premolars that later replace them.
-Primate spaces occur in about 50% of children. They appear in the deciduous dentition. The spaces appear between the upper lateral incisor and the upper canine. They also appear between the lower canine and the deciduous first molar.
MAXILLARY FIRST MOLAR
The first molars are also known as 6-year molars, because they erupt when a child is about 6 years
Facial Surface:-The facial surface has a facial groove that continues over from the occlusal surface, and runs down to the middle third of the facial surface.
Lingual Surface:-In a great many instances, there is a cusp on the lingual surface of the mesiolingual cusp. This is a fifth cusp called the cusp of Carabelli, which is in addition to the four cusps on the occlusal surface.
Proximal: In mesial perspective the mesiolingual cusp, mesial marginal ridge, and mesiobuccal cusp comprise the occlusal outline. In its distal aspect, the two distal cusps are clearly seen; however, the distal marginal ridge is somewhat shorter than the mesial one.
Occlusal Surface:- The tooth outline is somewhat rhomboidal with four distinct cusps. The cusp order according to size is: mesiolingual, mesiobuccal, distobuccal, and distolingual. The tips of the mesiolingual, mesiobuccal, and distobuccal cusps form the trigon, Cusp of Carabelli located on the mesiolingual cusp.
Contact Points; The mesial contact is above, but close to, the mesial marginal ridge. It is somewhat buccal to the center of the crown mesiodistally. The distal contact is similarly above the distal marginal ridge but is centered buccolingually.
Roots:-The maxillary first molar has three roots, which are named according to their locations mesiofacial, distofacial, and lingual (or palatal root). The lingual root is the largest.
Cementum
Composition
a. Inorganic (50%)—calcium hydroxyapatite crystals.
b. Organic (50%)—water, proteins, and type I collagen.
c. Note: Compared to the other dental tissues, the composition of cementum is most similar to bone; however, unlike bone, cementum is avascular (i.e., no Haversian systems or other vessels are present).
Main function of cementum is to attach PDL fibers to the root surface.
Cementum is generally thickest at the root apex and in interradicular areas of multirooted
Types of cementum
a. Acellular (primary) cementum
(1) A thin layer of cementum that surrounds the root, adjacent to the dentin.
(2) May be covered by a layer of cellular cementum, which most often occurs in the middle and apical root.
(3) It does not contain any cells.
b. Cellular (secondary) cementum
(1) A thicker, less-mineralized layer of cementum that is most prevalent along the apical root and in interradicular (furcal) areas of multirooted teeth.
(2) Contains cementocytes.
(3) Lacunae and canaliculi:
(a) Cementocytes (cementoblasts that become trapped in the extracellular matrix during cementogenesis) are observed in their entrapped spaces, known as lacunae.
(b) The processes of cementocytes extend through narrow channels called canaliculi.
(4) Microscopically, the best way to differentiate between acellular and cellular cementum is the presence of lacunae in cellular cementum.