Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

Maxillary Third Permanent Molar

They are the teeth most often congenitally missing

Facial: The crown is usually shorter in both axial and mesiodistal dimensions. Two buccal roots are present, but in most cases they are fused. The mesial buccal cusp is larger than the distal buccal cusp.

Lingual: In most thirds, there is just one large lingual cusp. In some cases there is a poorly developed distolingual cusp and a lingual groove. The lingual root is often fused to the to buccal cusps.

Proximal: The outline of the crown is rounded; it is often described as bulbous in dental literature. Technically, the mesial surface is the only 'proximal' surface. The distal surface does not contact another tooth.

Occlusal: The crown of this tooth is the smallest of the maxillary molars. The outline of the occlusal surface can be described as heart-shaped. The mesial lingual cusp is the largest, the mesial buccal is second in size, and the distal buccal cusp is the smallest.

Root Surface:-The root may have from one to as many as eight divisions. These divisions are usually fused and very often curved distally.

Soft Oral Tissues

Oral Mucosa

The oral mucosa consists mainly of two types of tissues: the oral epithelium, which consists of stratified, squamous epithelium, and the underlying connective tissue layer, known as the lamina propria.  There are three variations of oral mucosa.

A. Oral epithelium

1. Consists of stratified, squamous epithelium.

2. Four layers (Note: Cells mature as they progress from the deepest [basal] layer to the most superficial [cornified] layer) a. Basal layer (stratum germinativum or basale)

(1) A single layer of cuboidal or columnar cells overlying the lamina propria.

(2) Contains progenitor cells and thus provides cells to the epithelial layers above.

(3) Site of cell division (mitosis).

b. Prickle cell layer (stratum spinosum)

(1) Consists of several layers of larger, ovoid-shaped cells.

c. Granular layer (stratum granulosum)

(1) Cells appear larger and flattened.

(2) Granules (known as keratohyaline granules) are present in the cells.

(3) This layer is absent in nonkeratinized epithelium.

d. Cornified layer (stratum corneum, keratin, or horny layer)

(1) In keratinized epithelium:

(a) Orthokeratinized epithelium the squamous cells on the surface appear flat and contain keratin. They have no nuclei present.

(b) Parakeratinized epithelium the squamous cells appear flat and contain keratin; nuclei are present within the cells.

(2) In parakeratinized epithelium, both squamous cells without nuclei and cells with shriveled (pyknotic) nuclei are present.

(3) In nonkeratinized epithelium, the cells appear slightly flattened and contain nuclei.

B. Lamina propria

1. Consists of type I and III collagen, elastic fibers, and ground substance. It also contains many cell types, including fibroblasts, endothelial cells, immune cells, and a rich vascular and nerve supply.

2. Two layers:

a. Superficial, papillary layer

(1) Located around and between the epithelial ridges.

(2) Collagen fibers are thin and loosely arranged.

b. Reticular layer

(1) Located beneath the papillary layer.

(2) Collagen fibers are organized in thick, parallel bundles.

C. Types of oral mucosa

1. Masticatory mucosa

a. Found in areas that have to withstand compressive and shear forces.

b. Clinically, it has a rubbery, firm texture.

c. Regions: gingiva, hard palate.

2. Lining mucosa

a. Found in areas that are exposed to high levels of friction, but must also be mobile and distensible.

b. Clinically, it has a softer, more elastic texture.

c. Regions: alveolar mucosa, buccal mucosa, lips, floor of the mouth, ventral side of the tongue, and soft palate.

3. Specialized mucosa

a. Similar to masticatory mucosa, specialized mucosa is able to tolerate high compressive

and shear forces; however, it is unique in that it forms lingual papillae.

b. Region: dorsum of the tongue.

D. Submucosa

1. The connective tissue found beneath the mucosa . It contains blood vessels and nerves and may also contain fatty tissue and minor salivary glands.

2. Submucosa is not present in all regions of the oral cavity, such as attached gingiva, the tongue, and hard palate. Its presence tends to increase the mobility of the tissue overlying it.

E. Gingiva

1. The portion of oral mucosa that attaches to the teeth and alveolar bone.

2. There are two types of gingiva: attached and free gingiva. The boundary at which they meet is known as the free gingival groove .

a. Attached gingiva

(1) Directly binds to the alveolar bone and tooth.

(2) It extends from the free gingival groove to the mucogingival junction.

b. Free gingiva

(1) Coronal to the attached gingiva, it is not bound to any hard tissue.

(2) It extends from the gingival margin to the free gingival groove.

c. Together, the free and attached gingiva form the interdental papilla.

.F. Alveolar mucosa

1. The tissue just apical to the attached gingiva.

2. The alveolar mucosa and attached gingiva meet at the mucogingival junction .

G. Junctional epithelium

1. Area where the oral mucosa attaches to the tooth, forming the principal seal between the oral cavity and underlying tissues.

2. Is unique in that it consists of two basal lamina, an internal and external . The internal basal lamina, along with hemidesmosomes, comprises the attachment apparatus (the epithelial attachment). This serves to attach the epithelium directly to the tooth.

3. Histologically, it remains as immature, poorly differentiated tissue. This allows it to maintain its ability to develop hemidesmosomal attachments.

4. Has the highest rate of cell turnover of any oral mucosal tissue.

H. Interdental papilla (interdental gingiva)

1. Occupies the interproximal space between two teeth. It is formed by free and attached gingiva.

2. Functions to prevent food from entering the (interproximal) area beneath the contact point of two adjacent teeth. It therefore plays an important role in maintaining the health of the gingiva.

3. Col

a. If the interdental papilla is cross-sectioned in a buccolingual plane, it would show two peaks (buccal and lingual) with a dip between them, known as the col or interdental col. This depression occurs around the contact point of the two adjacent teeth.

b. Histologically, col epithelium is the same as junctional epithelium

 

Dentin

1. Composition

a. Inorganic (70%)—calcium hydroxyapatite crystals.

b. Organic (30%)—water and type I collagen.

 

2. Types of dentin

a. Primary dentin

(1) Dentin formed during tooth development, before completion of root formation.

It constitutes the majority of dentin found in a tooth.

(2) It consists of a normal organization of dentinal tubules.

(3) Circumpulpal dentin

(a) The layer of primary dentin that surrounds the pulp chamber.  It is formed after the mantle dentin.

(b) Its collagen fibers are parallel to the DEJ.

b. Secondary dentin

(1) Dentin formed after root formation is complete.

(2) Is deposited unevenly around the pulp chamber, forming along the layer of dentin closest to the pulp.

It therefore contributes to the decrease in the size of the pulp chamber as one ages.

(3) It consists of a normal, or slightly less regular, organization of dentinal tubules. However,

as compared to primary dentin, it is deposited at a slower rate.

(4) Although the dentinal tubules in secondary dentin can be continuous with those in primary

dentin, there is usually a tubular angle change between the two layers.

 

c. Tertiary (reparative, reactive) dentin

(1) Dentin that is formed in localized areas in response to trauma or other stimuli such as caries, tooth wear, or dental work.

(2) Its consistency and organization vary. It has no defined dentinal tubule pattern

 

d. Mantle dentin
 

(1) The outermost layer of dentin
(2) Is the first layer of dentin laid down by odontoblasts adjacent to the DEJ.

(3) Is slightly less mineralized than primary dentin.

(4) Has collagen fibers that are perpendicular to the DEJ.

(5) Dentinal tubules branch abundantly in this area.

 

e. Sclerotic (transparent) dentin

(1) Describes dentinal tubules that have become occluded with calcified material .

(2) Occurs when the odontoblastic processes retreat, filling the dentinal tubule with calcium phosphate crystals.

(3) Occurs with aging.


f. Dead tracts

(1) When odontoblasts die, they leave behind empty dentinal tubules, or dead tracts.

(2) Occurs with aging or trauma.

(3) Empty tubules are potential paths for bacterial invasion.

3. Structural characteristics and microscopic features:
 

a. Dentinal tubules

(1) Tubules extend from the DEJ to the pulp chamber.

(2) The tubules taper peripherally (i.e., their diameters are wider as they get closer to the pulp). Since the tubules are distanced farther apart at the periphery, the density of tubules is greater closer to the pulp.

(3) Each tubule contains an odontoblastic process or Tomes’ fiber.

Odontoblastic processes are characterized by the presence of a network of microtubules, with

Occasional mitochondria and vesicles present.

Note: the odontoblast’s cell body remains in the pulp chamber.
 

(4) Coronal tubules follow an S-shaped path, which may result from the crowding of  odontoblasts as they migrate toward the pulp during dentin formation.

 

b. Peritubular dentin (intratubular dentin)

(1) Is deposited on the walls of the dentinal tubule, which affects (i.e., narrows)the diameter of the tubule .

(2) It differs from intertubular dentin by lacking a collagenous fibrous matrix. It is also more mineralized than intertubular dentin.
 

c. Intertubular dentin

(1) The main part of dentin, which fills the space between dentinal tubules

 (2) Is mineralized and contains a collagenous matrix.


d. Interglobular dentin

(1) Areas of hypomineralized or unmineralized dentin caused by the failure of globules or calcospherites to fuse uniformly with mature dentin.

 

(2) Dentinal tubules are left undisturbed as they pass through interglobular dentin; however,

No peritubular dentin is present.

(3) Interglobular dentin is found in the:

(a) Crown—just beneath the mantle dentin.

(b) Root—beneath the dentinocemental junction, giving the root the appearance of a granular

layer (of Tomes).

 

e. Incremental lines

(1) Dentin is deposited at a daily rate of approximately 4 microns.

(2) As dentin is laid down, small differences in collagen fiber orientation result in the formation of incremental lines.

(3) Called imbrication lines of von Ebner.

(a) Every 5 days, or about every 20 µm, the changes in collagen fiber orientation appear more

accentuated. This results in a darker staining line, known as the imbrication line of von

Ebner.

(b) These lines are similar to the lines of Retzius seen in enamel.

 

f. Contour lines of Owen

(1) An optical phenomenon that occurs when the secondary curvatures of adjacent dentinal tubules coincide, resulting in the appearance of lines known as contour lines of Owen.
 

(2) Contour lines of Owen may also refer to lines that appear similar to those just described; however, these lines result from disturbances in mineralization.

 

g. Granular layer of Tomes

(1) A granular or spotty-appearing band that can be observed on the root surface adjacent to the dentinocemental junction, just beneath the cementum.

 

Nutrition and tooth development

As in other aspects of human growth and development, nutrition has an effect on the developing tooth. Essential nutrients for a healthy tooth include calcium, phosphorus, fluoride, and vitamins A, C, and D. Calcium and phosphorus are needed to properly form the hydroxyapatite crystals, and their levels in the blood are maintained by Vitamin D. Vitamin A is necessary for the formation of keratin, as Vitamin C is for collagen. Fluoride is incorporated into the hydroxyapatite crystal of a developing tooth and makes it more resistant to demineralization and subsequent decay.

Deficiencies of these nutrients can have a wide range of effects on tooth development. In situations where calcium, phosphorus, and vitamin D are deficient, the hard structures of a tooth may be less mineralized. A lack of vitamin A can cause a reduction in the amount of enamel formation. Fluoride deficency causes increased demineralization when the tooth is exposed to an acidic environment, and also delays remineralization. Furthermore, an excess of fluoride while a tooth is in development can lead to a condition known as fluorosis.

MANDIBULAR SECOND BICUSPID

Facial: From this aspect, the tooth somewhat resembles the first, but the buccal cusp is less pronounced. The tooth is larger than the first.

Lingual: Two significant variations are seen in this view. The most common is the three-cusp form which has two lingual cusps. The mesial of those is the larger of the two. The other form is the two-cusp for with a single lingual cusp. In that variant, the lingual cusp tip is shifted to the mesial.

Proximal: The buccal cusp is shorter than the first. The lingual cusp (or cusps) are much better developed than the first and give the lingual a full, well-developed profile.

Occlusal: The two or three cusp versions become clearly evident. In the three-cusp version, the developmental grooves present a distinctive 'Y' shape and have a central pit. In the two cusp version, a single developmental groove crosses the transverse ridge from mesial to distal

Contact Points; Height of Curvature: From the facial, the mesial contact is more occlusal than the distal contact.The distal marginal ridge is lower than the mesial marginal ridge

Root Surface:-The root of the tooth is single, that is usually larger than that of the first premolar  

the lower second premolar is larger than the first, while the upper first premolar is just slightly larger than the upper second

There may be one or two lingual cusps

Dentin

Composition: 70% inorganic, 20% organic, 10% water by weight and 45%, 33%, and 22% in volume respectively
Hydroxyapatite crystals and collagen type I
Physical characteristics: Harder than bone and softer than enamel
Yellow in color in normal teeth
Radiographic appearance: More radiolucent than enamel

Primary (circumpulpal) dentin: forms most of the tooth
Mantle dentin: first dentin to form; forms the outline of dentin in the adult tooth
Predentin: lines the innermost portion of dentin (faces the pulp)
Secondary dentin: after root formation dentin continues to form, continuous to primary dentin but with structural irregularities
Tertiary dentin: reactive or reparative dentin; may or may not have characteristics of primary dentin; produced in the area of an external stimulus; osteodentin

Dentin is formed by cells called odontoblasts.
These cells derive from the ectomesenchyme and produce the organic matrix that will calcify and become the dentin.
Formation of dentin initiates formation of enamel.
The formation of dentin starts during late bell-stage in the area of the future cusp.

First coronal dentin and then root dentin.

Completion of dentin does not occur until about 18 months after eruption of primary and 2-3 years after eruption of permanent teeth.

The rate of dentin development varies.

The role of the internal (inner) dental (enamel) epithelium
Cuboidal - Columnar (reverse polarization)
Ectomesenchymal cells of the dental papilla become preodontoblasts - odontoblasts
Acellular zone disappears

Histologic features of dentin
Odontoblasts
Dentinal tubules
Extend through the entire thickness of dentin
S-shaped (primary curvatures) path in the crown, less S-shaped in the root, almost straight in the cervical aspect
Secondary curvatures
Tubular microbranches
Presence of fluid
 

Intratubular dentin
Dentin in the tubule that is hypermineralized

The term peritubular dentin should not be used
 

Sclerotic dentin
Dentinal tubules that are occluded with calcified material
Most likely a physiologic response
Reduction of permeability of dentin
 

Intertubular dentin
Dentin between the tubules
 

Interglobular dentin
Areas of unmineralized or hypomineralized dentin
The defect affects mineralization and not the architecture of dentin
 

Incremental lines
Lines of von Ebner: lines associated with 5-day rythmic pattern of dentin deposition
Contour lines of Owen: Originally described by Owen they result from a coincidence of the secondary curvatures between neighboring dentinal tubules.
 

Granular Layer of Tomes
Seen only in ground sections in the root area covered by cementum
Originally, they were thought to be areas of hypomineralization
They are true spaces obtained by sections going through the looped terminal portions dentinal tubules

DE junction :Scalloped area

Enamel tissue with incremental lines of Retzius and dentin tissue with parallel, curved dentinal tubules are in contact at the irregular dentino-enamel junction. The junction often has a scalloped-shaped morphology

DC junction Dentin Cemental Junction

MANDIBULAR LATERAL INCISORS

The mandibular incisor is a little wider mesiodistal than the mandibular central incisor, and the crown is slightly longer from the incisal edge to the cervical line.

Facial Surface:-The facial surface is less symmetrical than the facial surface of the mandibular central incisor. The incisal edge slopes upward toward the mesioincisal angle, which is slightly less than 90°. The distoincisal angle is rounded. The mesial border is more nearly straight than the distal border.

Lingual Surface:- The incisal portion of the lingual surface is concave. The cingulum is quite large but blends in smoothly with the rest of the surface.

Root Surface:-The root is single and extremely flattened on its mesial and distal surfaces.

Explore by Exams