Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

Bell stage

The bell stage is known for the histodifferentiation and morphodifferentiation that takes place. The dental organ is bell-shaped during this stage, and the majority of its cells are called stellate reticulum because of their star-shaped appearance. Cells on the periphery of the enamel organ separate into three important layers. Cuboidal cells on the periphery of the dental organ are known as outer enamel epithelium.The cells of the enamel organ adjacent to the dental papilla are known as inner enamel epithelium. The cells between the inner enamel epithelium and the stellate reticulum form a layer known as the stratum intermedium. The rim of the dental organ where the outer and inner enamel epithelium join is called the cervical loop

Other events occur during the bell stage. The dental lamina disintegrates, leaving the developing teeth completely separated from the epithelium of the oral cavity; the two will not join again until the final eruption of the tooth into the mouth

The crown of the tooth, which is influenced by the shape of the internal enamel epithelium, also takes shape during this stage. Throughout the mouth, all teeth undergo this same process; it is still uncertain why teeth form various crown shapes—for instance, incisors versus canines. There are two dominant hypotheses. The "field model" proposes there are components for each type of tooth shape found in the ectomesenchyme during tooth development. The components for particular types of teeth, such as incisors, are localized in one area and dissipate rapidly in different parts of the mouth. Thus, for example, the "incisor field" has factors that develop teeth into incisor shape, and this field is concentrated in the central incisor area, but decreases rapidly in the canine area. The other dominant hypothesis, the "clone model", proposes that the epithelium programs a group of ectomesenchymal cells to generate teeth of particular shapes. This group of cells, called a clone, coaxes the dental lamina into tooth development, causing a tooth bud to form. Growth of the dental lamina continues in an area called the "progress zone". Once the progress zone travels a certain distance from the first tooth bud, a second tooth bud will start to develop. These two models are not necessarily mutually exclusive, nor does widely accepted dental science consider them to be so: it is postulated that both models influence tooth development at different times.Other structures that may appear in a developing tooth in this stage are enamel knots, enamel cords, and enamel niche.

Tooth eruption Theories

Tooth eruption occurs when the teeth enter the mouth and become visible. Although researchers agree that tooth eruption is a complex process, there is little agreement on the identity of the mechanism that controls eruption. Some commonly held theories that have been disproven over time include: (1) the tooth is pushed upward into the mouth by the growth of the tooth's root, (2) the tooth is pushed upward by the growth of the bone around the tooth, (3) the tooth is pushed upward by vascular pressure, and (4) the tooth is pushed upward by the cushioned hammock. The cushioned hammock theory, first proposed by Harry Sicher, was taught widely from the 1930s to the 1950s. This theory postulated that a ligament below a tooth, which Sicher observed on under a microscope on a histologic slide, was responsible for eruption. Later, the "ligament" Sicher observed was determined to be merely an artifact created in the process of preparing the slide.

The most widely held current theory is that while several forces might be involved in eruption, the periodontal ligaments provide the main impetus for the process. Theorists hypothesize that the periodontal ligaments promote eruption through the shrinking and cross-linking of their collagen fibers and the contraction of their fibroblasts.

Although tooth eruption occurs at different times for different people, a general eruption timeline exists. Typically, humans have 20 primary (baby) teeth and 32 permanent teeth. Tooth eruption has three stages. The first, known as deciduous dentition stage, occurs when only primary teeth are visible. Once the first permanent tooth erupts into the mouth, the teeth are in the mixed (or transitional) dentition. After the last primary tooth falls out of the mouth—a process known as exfoliation—the teeth are in the permanent dentition.

Primary dentition starts on the arrival of the mandibular central incisors, usually at eight months, and lasts until the first permanent molars appear in the mouth, usually at six years. The primary teeth typically erupt in the following order: (1) central incisor, (2) lateral incisor, (3) first molar, (4) canine, and (5) second molar. As a general rule, four teeth erupt for every six months of life, mandibular teeth erupt before maxillary teeth, and teeth erupt sooner in females than males. During primary dentition, the tooth buds of permanent teeth develop below the primary teeth, close to the palate or tongue.

Mixed dentition starts when the first permanent molar appears in the mouth, usually at six years, and lasts until the last primary tooth is lost, usually at eleven or twelve years. Permanent teeth in the maxilla erupt in a different order from permanent teeth on the mandible. Maxillary teeth erupt in the following order: (1) first molar (2) central incisor, (3) lateral incisor, (4) first premolar, (5) second premolar, (6) canine, (7) second molar, and (8) third molar. Mandibular teeth erupt in the following order: (1) first molar (2) central incisor, (3) lateral incisor, (4) canine, (5) first premolar, (6) second premolar, (7) second molar, and (8) third molar. Since there are no premolars in the primary dentition, the primary molars are replaced by permanent premolars. If any primary teeth are lost before permanent teeth are ready to replace them, some posterior teeth may drift forward and cause space to be lost in the mouth. This may cause crowding and/or misplacement once the permanent teeth erupt, which is usually referred to as malocclusion. Orthodontics may be required in such circumstances for an individual to achieve a straight set of teeth.

The permanent dentition begins when the last primary tooth is lost, usually at 11 to 12 years, and lasts for the rest of a person's life or until all of the teeth are lost (edentulism). During this stage, third molars (also called "wisdom teeth") are frequently extracted because of decay, pain or impactions. The main reasons for tooth loss are decay or periodontal disease.

 lntraarch relationship refers to the alignment of the teeth within an arch

1. In an ideal alignment teeth should contact at their proximal crests of curvature. A continuous arch form is observed in occlusal view

Curves of the occlusal plane (a line connecting the cusp tips of the canines, premolars, and molars) are observed from the proximal view

 

Curve of Spee: anterior to posterior curve; for mandibular teeth the curve is concave and for maxillary teeth it is convex

Curve of Wilson- medial to lateral curve for mandibular teeth the curve is also convex and for the maxillary it is convex

2. Contact does not always exist Some permanent dentitions have normal spacing

Primary dentitions often have developmental spacing in the anterior area: some primary den titions have a pattern of spacing called primate spaces between the primary maxillary lateral incisors and canine and between the mandibular canine and first mo1ar

Disturbances to the intraarch alignment are described as

a. Qpen contact where interproximal space exist  because of missing teeth oral habits, dental disease, or overdeveloped frena

b. where contact or position is at an unexpected area because of developmental disturbances, crowding, dental caries or periodontal ligament for their misplaced position: facial, lingual. mesial, supra(supraerupted) infra (infraerupted) and torso (rotated) version

FORMATION OF THE ROOT AND ITS ROLE IN ERUPTION

- As dentin and enamel is deposited the shape of the future crown appears.

- The cells just superficial to the horizontal diaphragm start to proliferate and grow pushing the horizontal diaphragm down into the mesenchym.

- This forms a tube.

- This tube is the epithelial root sheath of Hertwig's.

- The mesenchym cells lying inside the tube nearest to the epithelial root sheath are induced to differentiate into odontoblasts, which then start to deposit dentin.

- After the first dentin of the root has been laid down the inner epithelial cells of the sheath start to deposit an enameloid substance called intermediate cementum.

- The root sheath cells then separate from the intermediate cementum and breaks up in a network of epithelial strands.

- The mesenchym on the outside comes into contact with the intermediate cementum and differentiate into

cementoblasts, which will deposit the cementum.

- This cementum traps the collagenic fibres, of the periodontal ligament, which are also formed.

- Epithelium of the root sheath persists as epithelial rests of Malassez. Because the epithelium of the root sheath forms from enamel epithelium it can develop into ameloblasts which will deposit enamel pearls.

- There is little space for the root to develop.

- To create space the crown is pushed out.

Genetics and Environment: Introduction

The size of the teeth and the timing of the developing dentition and its eruption are genetically determined. Teeth are highly independent in their development. Also, teeth tend to develop along a genetically predetermined course.: tooth development and general physical development are rather independent of one another. Serious illness, nutritional deprivation, and trauma can significantly impact development of the teeth. This genetic independence (and their durability) gives teeth special importance in the study of evolution.

Teeth erupt full size and are ideal for study throughout life. Most important, age and sex can be recorded.

When teeth erupt into the oral cavity, a new set of factors influence tooth position. As the teeth come into function, genetic and environment determine tooth position.

In real life, however, girls shed deciduous teeth and receive their permanent teeth slightly earlier than boys, possibly reflecting the earlier physical maturation achieved by girls. Teeth are slightly larger in boys that in girls

1. Errors in development. These are usually genetic.

a. Variability of the individual teeth. In general, the teeth most distal in any class are the most variable.

b. Partial or total anodontia. missing teeth in children,

c. Supernumerary teeth.

d. Microdontia

e. Macrodontia

F. Microdontia

2. Errors in skeletal alignment. Malpositioned jaws disrupt normal tooth relationships.

3. Soft tissue problems.

-Ocasionally, the proper eruption of a tooth is prevented by fibrous connective tissue over the crown of the tooth.

-In the mixed dentition, the deciduous second molars have a special importance for the integrity of the permanent dentition. Consider this: The first permanent molars at age six years erupt distal to the second deciduous molars.

-Permanent posterior teeth exhibit physiological mesial drift, the tendency to drift mesially when space is available. If the deciduous second molars are lost prematurely, the first permanent molars drift anteriorly and block out the second premolars.

An incisor diastema may be present. The plural for diastema is diastemata.

-Important: The deciduous anteriors--incisors and canines are narrower than their permanent successors mesiodistally.

-Important: The deciduous molars are wider that their permanent successors mesiodistally.

-This size difference has clinical significance. The difference is called the leeway space.

The leeway space in the lower arch is approximately 3.4 mm.

-The leeway space in the upper arch is approximately 1.8 mm. In normal development, the leeway space is taken up by the mesial migration of the first permanent molars.

MAXILLARY FIRST BICUSPID (PREMOLARS)

It is considered to be the typical bicuspid. (The word "bicuspid" means "having two cusps.")

Facial: The buccal surface is quite rounded and this tooth resembles the maxillary canine. The buccal cusp is long; from that cusp tip, the prominent buccal ridge descends to the cervical line of the tooth.

Lingual: The lingual cusp is smaller and the tip of that cusp is shifted toward the mesial. The lingual surface is rounded in all aspects.

Proximal: The mesial aspect of this tooth has a distinctive concavity in the cervical third that extends onto the root. It is called variously the mesial developmental depression, mesial concavity, or the 'canine fossa'--a misleading description since it is on the premolar. The distal aspect of the maxillary first permanent molar also has a developmental depression. The mesial marginal developmental groove is a distinctive feature of this tooth.

Occlusal: There are two well-defined cusps buccal and lingual. The larger cusp is the buccal; its cusp tip is located midway mesiodistally. The lingual cusp tip is shifted mesially. The occlusal outline presents a hexagonal appearance. On the mesial marginal ridge is a distinctive feature, the mesial marginal developmental groove.

Contact Points;The distal contact area is located more buccal than is the mesial contact area.

Root Surface:-The root is quite flat on the mesial and distal surfaces. In about 50 percent of maxillary first bicuspids, the root is divided in the apical third, and when it so divided, the tips of the facial and lingual roots are slender and finely tapered.

Explore by Exams