Talk to us?

Dental Anatomy - NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

MANDIBULAR SECOND BICUSPID

Facial: From this aspect, the tooth somewhat resembles the first, but the buccal cusp is less pronounced. The tooth is larger than the first.

Lingual: Two significant variations are seen in this view. The most common is the three-cusp form which has two lingual cusps. The mesial of those is the larger of the two. The other form is the two-cusp for with a single lingual cusp. In that variant, the lingual cusp tip is shifted to the mesial.

Proximal: The buccal cusp is shorter than the first. The lingual cusp (or cusps) are much better developed than the first and give the lingual a full, well-developed profile.

Occlusal: The two or three cusp versions become clearly evident. In the three-cusp version, the developmental grooves present a distinctive 'Y' shape and have a central pit. In the two cusp version, a single developmental groove crosses the transverse ridge from mesial to distal

Contact Points; Height of Curvature: From the facial, the mesial contact is more occlusal than the distal contact.The distal marginal ridge is lower than the mesial marginal ridge

Root Surface:-The root of the tooth is single, that is usually larger than that of the first premolar  

the lower second premolar is larger than the first, while the upper first premolar is just slightly larger than the upper second

There may be one or two lingual cusps

Enamel

 

Structural characteristics and microscopic features

a.  Enamel rods or prisms

 

(1) Basic structural unit of enamel.

 

(2) Consists of tightly packed hydroxyapatite crystals. Hydroxyapatite crystals in enamel are four times larger and more tightly packed than hydroxyapatite found in other calcified

tissues (i.e., it is harder than bone).

 

(3) Each rod extends the entire thickness of enamel and is perpendicular to the dentinoenamel junction (DEJ).
 

b. Aprismatic enamel

 

(1) The thin outer layer of enamel found on the surface of newly erupted teeth.

(2) Consists of enamel crystals that are aligned perpendicular to the surface.

(3) It is aprismatic (i.e., prismless) and is more mineralized than the enamel beneath it.

(4) It results from the absence of Tomes processes on the ameloblasts during the final stages of enamel deposition.

 

c. Lines of Retzius (enamel striae)

 

(1) Microscopic features

 (a) In longitudinal sections, they are observed as brown lines that extend from the DEJ to the

tooth surface.

 (b) In transverse sections, they appear as dark, concentric rings similar to growth rings in a tree.
 

(2) The lines appear weekly during the formation of enamel.
 

(3) Although the cause of striae formation is unknown, the lines may represent appositional or incremental growth of enamel. They may also result from metabolic disturbances of ameloblasts.


(4) Neonatal line

(a) An accentuated, dark line of Retzius that results from the effect of physiological changes

on ameloblasts at birth.

(b) Found in all primary teeth and some cusps of permanent first molars.

 

d. Perikymata

(1) Lines of Retzius terminate on the tooth surface in shallow grooves known a perikymata.

(2) These grooves are usually lost through wear but may be observed on the surfaces of developing teeth or nonmasticatory surfaces of formed teeth.
 

e. Hunter-Schreger bands

(1) Enamel rods run in different directions. In longitudinal sections, these changes in direction result in a banding pattern known as HunterSchreger bands.

 

(2) These bands represent an optical phenomenon of enamel and consist of a series of  alternating dark and light lines when the section is viewed with reflected or polarized

light.

 

f. Enamel tufts

(1) Consist of hypomineralized groups of enamel rods.

(2) They are observed as short, dark projections found near or at the DEJ.

(3) They have no known clinical significance.

 

g. Enamel lamellae
 

(1) Small, sheet-like cracks found on the surface of enamel that extend its entire thickness.


(2) Consist of hypocalcified enamel.


(3) The open crack may be filled with organic material from leftover enamel organ components, connective tissues of the developing tooth, or debris from the oral cavity.

 

(4) Both enamel tufts and lamellae may be likened to geological faults in mature enamel.
 

h. Enamel spindle
 

(1) Remnants of odontoblastic processes that become trapped after crossing the DEJ during the differentiation of ameloblasts.
 

(2) Spindles are more pronounced beneath the cusps or incisal edges of teeth (i.e., areas where occlusal stresses are the greatest).
 

FUNCTIONS OF PERIODONTIUM

Tooth support
Shock absorber
Sensory (vibrations appreciated in the middle ear/reflex jaw opening)

 

Maxillary (upper) teeth

Primary teeth

Central
incisor

Lateral
incisor


Canine

First
molar

Second
molar

Initial calcification

14 wk

16 wk

17 wk

15.5 wk

19 wk

Crown completed

1.5 mo

2.5 mo

9 mo

6 mo

11 mo

Root completed

1.5 yr

2 yr

3.25 yr

2.5 yr

3 yr

 

 Mandibular (lower) teeth 

Initial calcification

14 wk

16 wk

17 wk

15.5 wk

18 wk

Crown completed

2.5 mo

3 mo

9 mo

5.5 mo

10 mo

Root completed

1.5 yr

1.5 yr

3.25 yr

2.5 yr

3 yr

 

 

 

 

 

 

Dental Formula, Dental Notation, Universal Numbering System

A. Dental Formula. The dental formula expresses the type and number of teeth per side

The Universal Numbering System. The rules are as follows:

1. Permanent teeth are designated by number, beginning with the last tooth on the upper right side, going on to the last tooth on the left side, then lower left to lower right

2. Deciduous teeth are designated by letter, beginning with the last tooth on the upper right side and proceeding in clockwise fashion

Dentinogenesis

Dentin formation, known as dentinogenesis, is the first identifiable feature in the crown stage of tooth development. The formation of dentin must always occur before the formation of enamel. The different stages of dentin formation result in different types of dentin: mantle dentin, primary dentin, secondary dentin, and tertiary dentin.

Odontoblasts, the dentin-forming cells, differentiate from cells of the dental papilla. They begin secreting an organic matrix around the area directly adjacent to the inner enamel epithelium, closest to the area of the future cusp of a tooth. The organic matrix contains collagen fibers with large diameters (0.1-0.2 μm in diameter). The odontoblasts begin to move toward the center of the tooth, forming an extension called the odontoblast process. Thus, dentin formation proceeds toward the inside of the tooth. The odontoblast process causes the secretion of hydroxyapatite crystals and mineralization of the matrix. This area of mineralization is known as mantle dentin and is a layer usually about 150 μm thick.

Whereas mantle dentin forms from the preexisting ground substance of the dental papilla, primary dentin forms through a different process. Odontoblasts increase in size, eliminating the availability of any extracellular resources to contribute to an organic matrix for mineralization. Additionally, the larger odontoblasts cause collagen to be secreted in smaller amounts, which results in more tightly arranged, heterogenous nucleation that is used for mineralization. Other materials (such as lipids, phosphoproteins, and phospholipids) are also secreted.

Secondary dentin is formed after root formation is finished and occurs at a much slower rate. It is not formed at a uniform rate along the tooth, but instead forms faster along sections closer to the crown of a tooth. This development continues throughout life and accounts for the smaller areas of pulp found in older individuals. Tertiary dentin, also known as reparative dentin, forms in reaction to stimuli, such as attrition or dental caries.

The dentin in the root of a tooth forms only after the presence of Hertwig's epithelial root sheath (HERS), near the cervical loop of the enamel organ. Root dentin is considered different than dentin found in the crown of the tooth (known as coronal dentin) because of the different orientation of collagen fibers, the decrease of phosphoryn levels, and the less amount of mineralization.

ERUPTION

. Root completion (approximately 50% of the root is formed when eruption begins)

Generally mandibular teeth erupt before maxillary teeth,

Primary teeth

I. Emerge into the oral cavity as follows:

           Maxillary                       Mandibular

Central Incisor                          7½ months                     6 months

Lateral incisor                           9 months                       7 months

Canine                                     18 months                      16 months

First Molar                               14 months                     12 months

Second Molar                          24months                       20 months

 

The sequence of  primary  tooth development is central incisor, lateral incisor, first molar, second molar

3. Hard tissue formation begins between 4 and 6 months in utero

4. Crowns completed between 1½ and 10 months of age

5. Roots are completed between I½ and3 yearsof age 6 to 18 months after eruption

6. By age 3 years all of the primary and permanent teeth (except for the third molars) are in some stage of development

7. Root resorption of primary teeth is triggered by the pressure exerted by the developing permanent tooth; it is followed by primary tooth exfoliation in sequential patterns

8. The primary dentition ends when the first permanent tooth erupts

Explore by Exams