NEET MDS Lessons
Dental Anatomy
Disturbances to interarch alignment are
a. Excessive overbite where the incisal edge of the maxillary incisors extend to the cervical third of the mandibular incisors
b. Excessive overjet where the maxillary teeth overjet the mandibular teeth by more than 3mm
c. End-to-end relationship: edge-to edge bite where the anterior teeth meet at there incisal edge with no overjet or overbite; cusp-to bite where the posterior teeth meet cusp to cusp with no interdigitation
d. Crossbite where the normal faciolingual relationship of the maxillary to the mandibular teeth is altered for the anterior.teeth. the mandibular tooth or teeth are facial rather than lingual to the maxillary teeth for the posterior teeth, normal inercuspaton is not seen
Pulp
1. Four zones—listed from dentin inward
a. Odontoblastic layer
(1) Contains the cell bodies of odontoblasts.
Note: their processes remain in dentinal tubules.
(2) Capillaries, nerve fibers, and dendritic cells may also be present.
b. Cell-free or cell-poor zone (zone of Weil)
(1) Contains capillaries and unmyelinated nerve fibers.
c. Cell-rich zone
(1) Consists mainly of fibroblasts. Macrophages, lymphocytes, and dendritic cells may also be present.
d. The pulp (pulp proper, central zone)
(1) The central mass of the pulp.
(2) Consists of loose connective tissue, larger vessels, and nerves. Also contains fibroblasts and pulpal cells.
2. Pulpal innervation
a. When pulpal nerves are stimulated, they can only transmit one signal pain.
b. There are no proprioceptors in the pulp.
c. Types of nerves:
(1) A-delta fibers
(a) Myelinated sensory nerve fibers.
(b) Stimulation results in the sensation of fast, sharp pain.
(c) Found in the coronal (odontoblastic) area of the pulp.
(2) C-fibers
(a) Unmyelinated sensory nerve fibers.
(b) Transmits information of noxious stimuli centrally.
(c) Stimulation results in pain that is slower, duller, and more diffuse in nature.
(d) Found in the central region of the pulp.
(3) Sympathetic fibers
(a) Found deeper within the pulp.
(b) Sympathetic stimulation results in vasoconstriction of vessels.
Development of occlusion.
A. Occlusion usually means the contact relationship in function. Concepts of occlusion vary with almost every specialty of dentistry.
Centric occlusion is the maximum contact and/or intercuspation of the teeth.
B. Occlusion is the sum total of many factors.
1. Genetic factors.
-Teeth can vary in size. Examples are microdontia (very small teeth) and macrodontia (very large teeth). Incidentally, Australian aborigines have the largest molar tooth size—some 35% larger than the smallest molar tooth group
-The shape of individual teeth can vary (such as third molars and the upper lateral incisors.)
-They can vary when and where they erupt, or they may not erupt at all (impaction).
-Teeth can be congenitally missing (partial or complete anodontia), or there can be extra (supernumerary) teeth.
-The skeletal support (maxilla/mandible) and how they are related to each other can vary considerably from the norm.
2. Environmental factors.
-Habits can have an affect: wear, thumbsucking, pipestem or cigarette holder usage, orthodontic appliances, orthodontic retainers have an influence on the occlusion.
3.Muscular pressure.
-Once the teeth erupt into the oral cavity, the position of teeth is affected by other teeth, both in the same dental arch and by teeth in the opposing dental arch.
-Teeth are affected by muscular pressure on the facial side (by cheeks/lips) and on the lingual side (by the tongue).
C. Occlusion constantly changes with development, maturity, and aging.
1 . There is change with the eruption and shedding of teeth as the successional changes from deciduous to permanent dentitions take place.
2. Tooth wear is significant over a lifetime. Abrasion, the wearing away of the occlusal surface reduces crown height and alters occlusal anatomy.
Attrition of the proximal surfaces reduces the mesial-distal dimensions of the teeth and significantly reduces arch length over a lifetime.
Abraision is the wear of teeth by agencies other than the friction of one tooth against another.
Attrition is the wear of teeth by one tooth rubbing against another
3. Tooth loss leaves one or more teeth without an antagonist. Also, teeth drift, tip, and rotate when other teeth in the arch are extracted.
The periodontium consists of tissues supporting and investing the tooth and includes cementum, the periodontal ligament (PDL), and alveolar bone.
Parts of the gingiva adjacent to the tooth also give minor support, although the gingiva is Not considered to be part of the periodontium in many texts. For our purposes here, the groups Of gingival fibers related to tooth investment are discussed in this section.
MAXILLARY SECOND BICUSPID
smaller in dimensions. The cusps are not as sharp as the maxillary first bicuspid and have only one root.
Facial: This tooth closely resembles the maxillary first premolar but is a less defined copy of its companion to the mesial. The buccal cusp is shorter, less pointed, and more rounded than the first.
Lingual: Again, this tooth resembles the first. The lingual cusp, however, is more nearly as large as the buccal cusp.
Proximal: Mesial and distal surfaces are rounded. The mesial developmental depression and mesial marginal ridge are not present on the second premolar.
Occlusal: The crown outline is rounded, ovoid, and is less clearly defined than is the first.
Contact Points; When viewed from the facial, the distal contact area is located more cervically than is the mesial contact area.
Tooth development is the complex process by which teeth form from embryonic cells, grow, and erupt into the mouth.. For human teeth to have a healthy oral environment, enamel, dentin, cementum, and the periodontium must all develop during appropriate stages of fetal development. Primary teeth start to form between the sixth and eighth weeks in utero, and permanent teeth begin to form in the twentieth week in utero.
Overview
The tooth bud (sometimes called the tooth germ) is an aggregation of cells that eventually forms a tooth.These cells are derived from the ectoderm of the first branchial arch and the ectomesenchyme of the neural crest.The tooth bud is organized into three parts: the enamel organ, the dental papilla and the dental follicle.
The enamel organ is composed of the outer enamel epithelium, inner enamel epithelium, stellate reticulum and stratum intermedium.These cells give rise to ameloblasts, which produce enamel and the reduced enamel epithelium. The location where the outer enamel epithelium and inner enamel epithelium join is called the cervical loop. The growth of cervical loop cells into the deeper tissues forms Hertwig's Epithelial Root Sheath, which determines the root shape of the tooth.
The dental papilla contains cells that develop into odontoblasts, which are dentin-forming cells. Additionally, the junction between the dental papilla and inner enamel epithelium determines the crown shape of a tooth. Mesenchymal cells within the dental papilla are responsible for formation of tooth pulp.
The dental follicle gives rise to three important entities: cementoblasts, osteoblasts, and fibroblasts. Cementoblasts form the cementum of a tooth. Osteoblasts give rise to the alveolar bone around the roots of teeth. Fibroblasts develop the periodontal ligaments which connect teeth to the alveolar bone through cementum.
Interarch relationship can be viewed from a stationary (fixed) and a dynamic (movable ) perspective
1.Stationary Relationship
a) .Centric Relation is the most superior relationship of the condyle of the mandible to the articular fossa of the temporal bone as determined by the bones ligaments. and muscles of the temporomandibular joint; in an ideal dentition it is the same as centric occlusion
Centric occlusion is habitual occlusion where maximum intercuspation occurs
The characteristics of centric occlusion are
(1) Overjet: or that characteristic of maxillary teeth to overlap the mandibular teeth in a horizontal direction by 1 to 2 mm the maxilla arch is slightly larger; functions to protect the narrow edge of the incisors and provide for an intercusping relation of posterior teeth
(2) Overbite or that characteristic of maxillary anterior teeth to overlap the mandibular anterior teeth in a vertical direction by a third of the lower crown height facilitates scissor like function of incisors
(3) Intercuspation. or that characteristic of posterior teeth to intermesh in a faciolingual direction The mandibular facial and maxillary lingual cusp are centric cusps yhat contact interocclusally in the opposing arch
(4) Interdigitation, or that characteristic_of that tooth to articulate with two opposing teeth (except for the mandibular central incisors and the maxillary last molars); a mandibular tooth occludes with the same tooth in the upper arch and the one mesial to it; a maxillary tooth occludes with the same tooth in the mandibular arch and the one distal to it.
2. Dynamic interarch relationshjps are result of functional mandibular movements that start and end with centric occlusion during mastication
a. Mandibular movements are
(1) Depression (opening)
(2) Elevation (closing)
(3) Protrusion (thrust forward)
(4) Retrusion (bring back)
(5) Lateral movements right and left; one side is always the working side and one the balancing or nonworking side
b. Mandibular movements from centric occlusion are guided by the maxillary teeth
(1) Protrusion is guided by the incisors called incisal guidence
(2) Lateral movments are guided by the Canines on the working side in young, unworn dentitions (cuspid rise or cuspid protected occlusion); guided by incisors and posterior teeth in older worn. dentition (incisal/group guidance)
c. As mandibular movements commence from centric occlusion, posterior teeth should disengage in protrusion the posterior teeth on the balancing side should disengage in lateral movement
d. If tooth contact occurs where teeth should be disengaged, occlusal interference or premature contacts exist.