NEET MDS Lessons
Dental Anatomy
Dental Formula, Dental Notation, Universal Numbering System
A. Dental Formula. The dental formula expresses the type and number of teeth per side
The Universal Numbering System. The rules are as follows:
1. Permanent teeth are designated by number, beginning with the last tooth on the upper right side, going on to the last tooth on the left side, then lower left to lower right
2. Deciduous teeth are designated by letter, beginning with the last tooth on the upper right side and proceeding in clockwise fashion
MAXILLARY SECOND BICUSPID
smaller in dimensions. The cusps are not as sharp as the maxillary first bicuspid and have only one root.
Facial: This tooth closely resembles the maxillary first premolar but is a less defined copy of its companion to the mesial. The buccal cusp is shorter, less pointed, and more rounded than the first.
Lingual: Again, this tooth resembles the first. The lingual cusp, however, is more nearly as large as the buccal cusp.
Proximal: Mesial and distal surfaces are rounded. The mesial developmental depression and mesial marginal ridge are not present on the second premolar.
Occlusal: The crown outline is rounded, ovoid, and is less clearly defined than is the first.
Contact Points; When viewed from the facial, the distal contact area is located more cervically than is the mesial contact area.
Mandibular First Deciduous Molar
-This tooth doesn't resemble any other tooth. It is unique unto itself.
-There are two roots.
-There is a strong bulbous enamel bulge buccally at the mesial.
- the mesiolingual cusps on this tooth is the highest and largest of the cusps.
MAXILLARY LATERAL INCISORS
it is shorter, narrower, and thinner.
Facial: The maxillary lateral incisor resembles the central incisor, but is narrower mesio-distally. The mesial outline resembles the adjacent central incisor; the distal outline--and particularly the distal incisal angle is more rounded than the mesial incisal angle (which resembles that of the adjacent central incisor. The distal incisal angle resembling the mesial of the adjacent canine.
Lingual: On the lingual surface, the marginal ridges are usually prominent and terminate into a prominent cingulum. There is often a deep pit where the marginal ridges converge gingivally. A developmental groove often extends across the distal of the cingulum onto the root continuing for part or all of its length.
Proximal: In proximal view, the maxillary lateral incisor resembles the central except that the root appears longer--about 1 1/2 times longer than the crown. A line through the long axis of the tooth bisects the crown.
Incisal: In incisal view, this tooth can resemble either the central or the canine to varying degrees. The tooth is narrower mesiodistally than the upper central incisor; however, it is nearly as thick labiolingually.
Contact Points: The mesial contact is at the junction of the incisal third and the middle third. The distal contact is is located at the center of the middle third of the distal surface.
Root Surface:-The root is conical (cone-shaped) but somewhat flattened mesiodistally.
MANDIBULAR CUSPIDS
Mandibular canines are those lower teeth that articulate with the mesial aspect of the upper canine.
Facial: The mandibular canine is noticeably narrower mesidistally than the upper, but the root may be as long as that of the upper canine. In an individual person,the lower canine is often shorter than that of the upper canine. The mandibular canine is wider mesiodistally than either lower incisor. A distinctive feature is the nearly straight outline of the mesial aspect of the crown and root. When the tooth is unworn, the mesial cusp ridge appears as a sort of 'shoulder' on the tooth. The mesial cusp ridge is much shorter than the distal cusp ridge.
Lingual: The marginal ridges and cingulum are less prominent than those of the maxillary canine. The lingual surface is smooth and regular. The lingual ridge, if present, is usually rather subtle in its expression.
Proximal: The mesial and distal aspects present a triangular outline. The cingulum as noted is less well developed. When the crown and root are viewed from the proximal, this tooth uniquely presents a crescent-like profile similar to a cashew nut.
Incisal: The mesiodistal dimension is clearly less than the labiolingual dimension. The mesial and distal 'halves' of the tooth are more identical than the upper canine from this perspective. In the mandibular canine, the unworn incisal edge is on the line through the long axis of this tooth.
Introduction. The Jaws and Dental Arches
The teeth are arranged in upper and lower arches. Those of the upper are called maxillary; those of the lower are mandibular.
- The maxilla is actually two bones forming the upper jaw; they are rigidly attached to the skull..
- The mandible is a horseshoe shaped bone which articulates with the skull by way of the temporomandibular joint the TMJ.
- The dental arches, the individual row of teeth forming a tooth row attached to their respective jaw bones have a distinctive shape known as a catenary arch.
Crown stage
Hard tissues, including enamel and dentin, develop during the next stage of tooth development. This stage is called the crown, or maturation, stage by some researchers. Important cellular changes occur at this time. In prior stages, all of the inner enamel epithelium cells were dividing to increase the overall size of the tooth bud, but rapid dividing, called mitosis, stops during the crown stage at the location where the cusps of the teeth form. The first mineralized hard tissues form at this location. At the same time, the inner enamel epithelial cells change in shape from cuboidal to columnar. The nuclei of these cells move closer to the stratum intermedium and away from the dental papilla.
The adjacent layer of cells in the dental papilla suddenly increases in size and differentiates into odontoblasts, which are the cells that form dentin. Researchers believe that the odontoblasts would not form if it were not for the changes occurring in the inner enamel epithelium. As the changes to the inner enamel epithelium and the formation of odontoblasts continue from the tips of the cusps, the odontoblasts secrete a substance, an organic matrix, into their immediate surrounding. The organic matrix contains the material needed for dentin formation. As odontoblasts deposit organic matrix, they migrate toward the center of the dental papilla. Thus, unlike enamel, dentin starts forming in the surface closest to the outside of the tooth and proceeds inward. Cytoplasmic extensions are left behind as the odontoblasts move inward. The unique, tubular microscopic appearance of dentin is a result of the formation of dentin around these extensions.
After dentin formation begins, the cells of the inner enamel epithelium secrete an organic matrix against the dentin. This matrix immediately mineralizes and becomes the tooth's enamel. Outside the dentin are ameloblasts, which are cells that continue the process of enamel formation; therefore, enamel formation moves outwards, adding new material to the outer surface of the developing tooth.