Talk to us?

Dental Anatomy - NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

Gingiva

The connection between the gingiva and the tooth is called the dentogingival junction. This junction has three epithelial types: gingival, sulcular, and junctional epithelium. These three types form from a mass of epithelial cells known as the epithelial cuff between the tooth and the mouth.

Much about gingival formation is not fully understood, but it is known that hemidesmosomes form between the gingival epithelium and the tooth and are responsible for the primary epithelial attachment. Hemidesmosomes provide anchorage between cells through small filament-like structures provided by the remnants of ameloblasts. Once this occurs, junctional epithelium forms from reduced enamel epithelium, one of the products of the enamel organ, and divides rapidly. This results in the perpetually increasing size of the junctional epithelial layer and the isolation of the remenants of ameloblasts from any source of nutrition. As the ameloblasts degenerate, a gingival sulcus is created.

Permanent teeth

1. The permanent teeth begin formation between birth and 3 years of age (except for the third molars)

2. The crowns of permanent teeth are completed between 4 and 8 years of age, at approximately one- half the age of eruption

The sequence for permanent development

Maxillary                     

First molar → Central incisor → Lateral incisor → First premotar → Second pmmolar  → Canine → Second molar → Third molar

Mandibular

First molar → Central incisor → Lateral incisor → Canine → First premolar → Second premolar → Second molar → Third molar

Permanent teeth emerge into the oral cavity as

                                      Maxillary                       Mandibular

Central incisor               7-8 years                        6-7 years

Lateral incisor                8-9 years                        7-8 years

Canine                           11-12 years                    9-10 years

First premolar                10-Il years                      10-12 years

Second premolar            10-12 years                  11-12 years

First molar                       6-7 years                      6-7 years

Second molar                 12-13 years                    11-13 years

Third molar                      17-21 years                    17-21 years

 

The roots of the permanent teeth are completed between 10 and 16 years of age, 2 to 3 years after eruption

Transient structures during tooth development

Enamel knot: Thickening of the internal dental epithelium at the center of the dental organ.
Enamel cord: Epithelial proliferation that seems to divide the dental organ in two.
 

Review the role of these two structures
Enamel niche: It is an artifact that is produced during section of the tissue. It occurs because the dental organ is a sheet of proliferating cells rather than a single strand. It looks like a concavity that contains ectomesenchyme.

The Transition from the Deciduous to the Permanent Dentition.

1. The transition begins with the eruption of the four first permanent molars, and replacement of the lower deciduous central incisors by the permanent lower central incisors.

2. Complete resorption of the deciduous tooth roots permits exfoliation of that tooth and replacement by the permanent (successional) teeth

3. The mixed dentition exists from approximately age 6 years to approximately age 12 years. In contrast, the intact deciduous dentition is functional from age 2 - 2 /2 years of age to 6 years of age.

4. The enamel organ of each permanent anterior tooth is connected to the oral epithelium via a fibrous cord, the gubernaculum. The foramina through which it passes can be seen in youthful skulls

The deciduous second molars are particularly important. It is imperative that the deciduous second molars be preserved until their normal time of exfoliation. This prevent mesial migration of the first permanent molars.

Use a space maintainer in the event that a second deciduous molar is lost prematurely

MORPHOLOGY OF THE DECIDUOUS TEETH

 

Deciduous Anterior Teeth.

 -The primary anteriors are morphologically similar to the permanent anteriors.

-The incisors are relatively simple in their morphology.

-The roots are long and narrow.

-When compared to the permanent incisors, the mesiodistal dimension is relatively larger when compared to axial crown length

-At the time of eruption, mamelons are not present in deciduous incisors

-They are narrower mesiodistally than their permanent successors.

Genetics and Environment: Introduction

The size of the teeth and the timing of the developing dentition and its eruption are genetically determined. Teeth are highly independent in their development. Also, teeth tend to develop along a genetically predetermined course.: tooth development and general physical development are rather independent of one another. Serious illness, nutritional deprivation, and trauma can significantly impact development of the teeth. This genetic independence (and their durability) gives teeth special importance in the study of evolution.

Teeth erupt full size and are ideal for study throughout life. Most important, age and sex can be recorded.

When teeth erupt into the oral cavity, a new set of factors influence tooth position. As the teeth come into function, genetic and environment determine tooth position.

In real life, however, girls shed deciduous teeth and receive their permanent teeth slightly earlier than boys, possibly reflecting the earlier physical maturation achieved by girls. Teeth are slightly larger in boys that in girls

Histology of the Pulp

PARTICIPATING CELLS

1. Odontoblasts (body and process)
Most distinctive cells of the pulp
Single layer
The cells are columnar in the coronal portion, cuboidal in the middle portion, flat in the apical portion

Individual odontoblasts communicate with each other via junctions. The number of odontoblasts corresponds to the number of dentinal tubules.
The lifespan of an odontoblast equals the one of a vital tooth.
The morphology of the odontoblasts reflects their functional activity.
(There are three stages that reflect the functional activity of a cell: active, transitional and resting)

The odontoblastic process

2. Fibroblasts
Most numerous cells
Produce collagen fibers and ground substance
Ground substance consists of: proteoglycans and glycoproteins
Again, active and resting cells
Fibroblasts have also capability to degrade collagen

3. Undifferentiated mesenchymal cells A pool of cells from which connective tissue cells can derive.
They are reduced with age.

4. Endothelial cells, Schwann cells, pericytes and immunocompetent cells

MATRIX

It is composed of fibers and ground substance
55% of the fibers are Type I collagen. 45% of the fibers are Type III collagen.
The ground substance is gelatinous in the coronal aspect and more fibrous in the apical.

VASCULARITY

Superior and inferior alveolar arteries that derive from the external carotids
Afferent side of the circulation: arterioles
Efferent side of the circulation: venules
Lymphatics

Small, blind, thin-walled vessels in the coronal region of the pulp and exit via one or two larger vessels.
 

Explore by Exams