NEET MDS Lessons
Dental Anatomy
Abnormalities
There are a number of tooth abnormalities relating to development.
Anodontia is a complete lack of tooth development, and hypodontia is a lack of some tooth development. Anodontia is rare, most often occurring in a condition called hipohidrotic ectodermal dysplasia, while hypodontia is one of the most common developmental abnormalities, affecting 3.5–8.0% of the population (not including third molars). The absence of third molars is very common, occurring in 20–23% of the population, followed in prevalence by the second premolar and lateral incisor. Hypodontia is often associated with the absence of a dental lamina, which is vulnerable to environmental forces, such as infection and chemotherapy medications, and is also associated with many syndromes, such as Down syndrome and Crouzon syndrome.
Hyperdontia is the development of extraneous teeth. It occurs in 1–3% of Caucasians and is more frequent in Asians. About 86% of these cases involve a single extra tooth in the mouth, most commonly found in the maxilla, where the incisors are located. Hyperdontia is believed to be associated with an excess of dental lamina.
Dilaceration is an abnormal bend found on a tooth, and is nearly always associated with trauma that moves the developing tooth bud. As a tooth is forming, a force can move the tooth from its original position, leaving the rest of the tooth to form at an abnormal angle. Cysts or tumors adjacent to a tooth bud are forces known to cause dilaceration, as are primary (baby) teeth pushed upward by trauma into the gingiva where it moves the tooth bud of the permanent tooth.
Regional odontodysplasia is rare, but is most likely to occur in the maxilla and anterior teeth. The cause is unknown; a number of causes have been postulated, including a disturbance in the neural crest cells, infection, radiation therapy, and a decrease in vascular supply (the most widely held hypothesis).Teeth affected by regional odontodysplasia never erupt into the mouth, have small crowns, are yellow-brown, and have irregular shapes. The appearance of these teeth in radiographs is translucent and "wispy," resulting in the nickname "ghost teeth"
Classification of Cementum
- Embryologically
Primary and secondary
2. According to cellular component
Acellular: Thin, Amorphous, First layer to seal the dentin tubules
Cellular: Thick, Better structure, Apical surface
Layers of cellular and acellular cementum alternate (randomly)
3. Based on the origin of the collagenous matrix
Extrinsic
Intrinsic
Mixed
4. Combined classification
a. Primary acellular intinsic fiber cementum
b. Primary acellualar extrinsic fiber cementum
c. Secondary cellular intrinsic fiber cementum
d. Secondary cellular mixed fiber cementum
e. Acellular afibrillar cementum
5. Depending on the location and patterning
Intermediate and mixed stratified cementum
Participating Cells
Cementoblasts
Active
Cells are round, plump with basophilic cytoplasm (rough endoplasmic reticulum)
Inactive
Cells have little cytoplasm
Cementocytes
- Cementocyte lacuna
- cementocyte canaliculus
Cells have fewer organelles compared to cementoblasts. They are found in lacunae and have numerous processes toward the periodontal ligament. Eventually they die due to avascularity
Cementicles
a) free
b) attached
c) embedded
As root and cementum formation begin, bone is created in the adjacent area. Throughout the body, cells that form bone are called osteoblasts. In the case of alveolar bone, these osteoblast cells form from the dental follicle. Similar to the formation of primary cementum, collagen fibers are created on the surface nearest the tooth, and they remain there until attaching to periodontal ligaments.
Like any other bone in the human body, alveolar bone is modified throughout life. Osteoblasts create bone and osteoclasts destroy it, especially if force is placed on a tooth. As is the case when movement of teeth is attempted through orthodontics, an area of bone under compressive force from a tooth moving toward it has a high osteoclast level, resulting in bone resorption. An area of bone receiving tension from periodontal ligaments attached to a tooth moving away from it has a high number of osteoblasts, resulting in bone formation.
Soft Oral Tissues
Oral Mucosa
The oral mucosa consists mainly of two types of tissues: the oral epithelium, which consists of stratified, squamous epithelium, and the underlying connective tissue layer, known as the lamina propria. There are three variations of oral mucosa.
A. Oral epithelium
1. Consists of stratified, squamous epithelium.
2. Four layers (Note: Cells mature as they progress from the deepest [basal] layer to the most superficial [cornified] layer) a. Basal layer (stratum germinativum or basale)
(1) A single layer of cuboidal or columnar cells overlying the lamina propria.
(2) Contains progenitor cells and thus provides cells to the epithelial layers above.
(3) Site of cell division (mitosis).
b. Prickle cell layer (stratum spinosum)
(1) Consists of several layers of larger, ovoid-shaped cells.
c. Granular layer (stratum granulosum)
(1) Cells appear larger and flattened.
(2) Granules (known as keratohyaline granules) are present in the cells.
(3) This layer is absent in nonkeratinized epithelium.
d. Cornified layer (stratum corneum, keratin, or horny layer)
(1) In keratinized epithelium:
(a) Orthokeratinized epithelium the squamous cells on the surface appear flat and contain keratin. They have no nuclei present.
(b) Parakeratinized epithelium the squamous cells appear flat and contain keratin; nuclei are present within the cells.
(2) In parakeratinized epithelium, both squamous cells without nuclei and cells with shriveled (pyknotic) nuclei are present.
(3) In nonkeratinized epithelium, the cells appear slightly flattened and contain nuclei.
B. Lamina propria
1. Consists of type I and III collagen, elastic fibers, and ground substance. It also contains many cell types, including fibroblasts, endothelial cells, immune cells, and a rich vascular and nerve supply.
2. Two layers:
a. Superficial, papillary layer
(1) Located around and between the epithelial ridges.
(2) Collagen fibers are thin and loosely arranged.
b. Reticular layer
(1) Located beneath the papillary layer.
(2) Collagen fibers are organized in thick, parallel bundles.
C. Types of oral mucosa
1. Masticatory mucosa
a. Found in areas that have to withstand compressive and shear forces.
b. Clinically, it has a rubbery, firm texture.
c. Regions: gingiva, hard palate.
2. Lining mucosa
a. Found in areas that are exposed to high levels of friction, but must also be mobile and distensible.
b. Clinically, it has a softer, more elastic texture.
c. Regions: alveolar mucosa, buccal mucosa, lips, floor of the mouth, ventral side of the tongue, and soft palate.
3. Specialized mucosa
a. Similar to masticatory mucosa, specialized mucosa is able to tolerate high compressive
and shear forces; however, it is unique in that it forms lingual papillae.
b. Region: dorsum of the tongue.
D. Submucosa
1. The connective tissue found beneath the mucosa . It contains blood vessels and nerves and may also contain fatty tissue and minor salivary glands.
2. Submucosa is not present in all regions of the oral cavity, such as attached gingiva, the tongue, and hard palate. Its presence tends to increase the mobility of the tissue overlying it.
E. Gingiva
1. The portion of oral mucosa that attaches to the teeth and alveolar bone.
2. There are two types of gingiva: attached and free gingiva. The boundary at which they meet is known as the free gingival groove .
a. Attached gingiva
(1) Directly binds to the alveolar bone and tooth.
(2) It extends from the free gingival groove to the mucogingival junction.
b. Free gingiva
(1) Coronal to the attached gingiva, it is not bound to any hard tissue.
(2) It extends from the gingival margin to the free gingival groove.
c. Together, the free and attached gingiva form the interdental papilla.
.F. Alveolar mucosa
1. The tissue just apical to the attached gingiva.
2. The alveolar mucosa and attached gingiva meet at the mucogingival junction .
G. Junctional epithelium
1. Area where the oral mucosa attaches to the tooth, forming the principal seal between the oral cavity and underlying tissues.
2. Is unique in that it consists of two basal lamina, an internal and external . The internal basal lamina, along with hemidesmosomes, comprises the attachment apparatus (the epithelial attachment). This serves to attach the epithelium directly to the tooth.
3. Histologically, it remains as immature, poorly differentiated tissue. This allows it to maintain its ability to develop hemidesmosomal attachments.
4. Has the highest rate of cell turnover of any oral mucosal tissue.
H. Interdental papilla (interdental gingiva)
1. Occupies the interproximal space between two teeth. It is formed by free and attached gingiva.
2. Functions to prevent food from entering the (interproximal) area beneath the contact point of two adjacent teeth. It therefore plays an important role in maintaining the health of the gingiva.
3. Col
a. If the interdental papilla is cross-sectioned in a buccolingual plane, it would show two peaks (buccal and lingual) with a dip between them, known as the col or interdental col. This depression occurs around the contact point of the two adjacent teeth.
b. Histologically, col epithelium is the same as junctional epithelium
Cementum & Cementogenesis
Cementum formation is called cementogenesis and occurs late in the development of teeth. Cementoblasts are the cells responsible for cementogenesis. Two types of cementum form: cellular and acellular.
Acellular cementum forms first. The cementoblasts differentiate from follicular cells, which can only reach the surface of the tooth's root once Hertwig's Epithelial Root Sheath (HERS) has begun to deteriorate. The cementoblasts secrete fine collagen fibrils along the root surface at right angles before migrating away from the tooth. As the cementoblasts move, more collagen is deposited to lengthen and thicken the bundles of fibers. Noncollagenous proteins, such as bone sialoprotein and osteocalcin, are also secreted. Acellular cementum contains a secreted matrix of proteins and fibers. As mineralization takes place, the cementoblasts move away from the cementum, and the fibers left along the surface eventually join the forming periodontal ligmaments.
Cellular cementum develops after most of the tooth formation is complete and after the tooth occludes (in contact) with a tooth in the opposite arch. This type of cementum forms around the fiber bundles of the periodontal ligaments. The cementoblasts forming cellular cementum become trapped in the cementum they produce.
The origin of the formative cementoblasts is believed to be different for cellular cementum and acellular cementum. One of the major current hypotheses is that cells producing cellular cementum migrate from the adjacent area of bone, while cells producing acellular cementum arise from the dental follicle. Nonetheless, it is known that cellular cementum is usually not found in teeth with one root. In premolars and molars, cellular cementum is found only in the part of the root closest to the apex and in interradicular areas between multiple roots.
ARTICULAR SURFACES COVERED BY FIBROUS TISSUE
TMJ is an exception form other synovial joints. Two other joints, the acromio- and sternoclavicular joints are similar to the TMJ. Mandible & clavicle derive from intramembranous ossificiation.
Histologic
- Fibrous layer: collagen type I, avascular (self-contained and replicating)
- Proliferating zone that formes condylar cartilage
- Condylar cartilage is fibrocartilage that does not play role in articulation nor has formal function
- Capsule: dense collagenous tissue (includes the articular eminence)
- Synovial membrane: lines capsule (does not cover disk except posterior region); contains folds (increase in pathologic conditions) and villi
Two layers: a cellular intima (synovial cells in fiber-free matrix) and a vascular subintima
Synovial cells: A (macrophage-like) syntesize hyaluronate
B (fibroblast-like) add protein in the fluid
Synovial fluid: plasma with mucin and proteins, cells
Liquid environment: lubrication, ?nutrition - Disk: separates the cavity into two comprartments, type I collagen
anterior and posterior portions
anetiorly it divides into two lamellae one towards the capsule, the other towards the condyle
vascular in the preiphery, avascular in the center - Ligaments: nonelastic collagenous structures. One ligament worth mentioning is the lateral or temporomandibular ligament. Also there are the spheno- and stylomandibular with debatable functional role.
Innervations
Ruffini |
Posture |
Dynamic and static balance |
Pacini |
Dynamic mechanoreception |
Movement accelerator |
Golgi |
Static mechanoreception |
Protection (ligament) |
Free |
Pain |
Protection joint |
Histology of the Pulp
PARTICIPATING CELLS
1. Odontoblasts (body and process)
Most distinctive cells of the pulp
Single layer
The cells are columnar in the coronal portion, cuboidal in the middle portion, flat in the apical portion
Individual odontoblasts communicate with each other via junctions. The number of odontoblasts corresponds to the number of dentinal tubules.
The lifespan of an odontoblast equals the one of a vital tooth.
The morphology of the odontoblasts reflects their functional activity.
(There are three stages that reflect the functional activity of a cell: active, transitional and resting)
The odontoblastic process
2. Fibroblasts
Most numerous cells
Produce collagen fibers and ground substance
Ground substance consists of: proteoglycans and glycoproteins
Again, active and resting cells
Fibroblasts have also capability to degrade collagen
3. Undifferentiated mesenchymal cells A pool of cells from which connective tissue cells can derive.
They are reduced with age.
4. Endothelial cells, Schwann cells, pericytes and immunocompetent cells
MATRIX
It is composed of fibers and ground substance
55% of the fibers are Type I collagen. 45% of the fibers are Type III collagen.
The ground substance is gelatinous in the coronal aspect and more fibrous in the apical.
VASCULARITY
Superior and inferior alveolar arteries that derive from the external carotids
Afferent side of the circulation: arterioles
Efferent side of the circulation: venules
Lymphatics
Small, blind, thin-walled vessels in the coronal region of the pulp and exit via one or two larger vessels.