NEET MDS Lessons
Dental Anatomy
Compensating curvatures of the individual teeth.
- the gentle curvature of the long axes of certain posterior teeth to exhibit a gentle curvature.
-These are probably analogous to the trabecular patterns seen in the femur and therefore reflect lines of stress experienced during function.
Posteruptive tooth movement.
These movements occur after eruption of the teeth into function in the oral cavity. These movements, known collectively as occlusomesial forces.
A. Continuous tooth eruption eruption of teeth after coming into occlusion. This process compensates for occlusal tooth wear.. Cementum deposition and progressive remodelling of the alveolar bone are the growth processes that provide for continuous tooth movement
B. Physiological mesial drift :Tthe tendency of permanent posterior teeth to migrate mesially in the dental arch both before and after they come into occlusion. Clinically, it compensates for proximal tooth wear.
(1) It describes the tendency of posterior teeth to move anteriorly.
(2) It applies to permanent teeth, not deciduous teeth.
(3) The distal tooth have the stronger is the tendency for drift.
(4) It compensates for proximal wear.
(5) In younger persons, teeth drift bodily; in older persons, they tip and rotate.
(6) Forces that cause it include occlusal forces, PDL contraction, and soft tissue pressures. There may be other more subtle factors as well.
Height of Epithelial Attachment
The height of normal gingival tissue . mesiallv and distallv on approximating teeth, is directly dependent upon the height of the epithelial attachment on these teeth. Normal attachment follows the curvature of the cementoenamel junction if the teeth are jn proper, alignment and contact.
Permanent dentition period
-Maxillary / mandibular occlusal relationships are established when the last of the deciduous teeth are lost. The adult relationship of the first permanent molars is established at this time.
-Occlusal and proximal wear reduces crown height to the permanent dentition and the mesiodistal dimensions of the teeth
occlusal and proximal wear also changes the anatomy of teeth. As cusps are worn off, the occlusion can become virtually flat plane. -In the absence of rapid wear, overbite and overjet tend to remain stable.
-Mesio-distal jaw relationships tend to be stable,
With aging, the teeth change in color from off white to yellow. smoking and diet can accelerate staining or darkening of the teeth.
Gingival recession results in the incidence of more root caries . With gingival recession, some patients have sensitivity due to exposed dentin at the cemento-enamel junction.
Curve of Spee.
-The cusp tips and incisal edges align so that there is a smooth, linear curve when viewed from the lateral aspect. The mandibular curve of Spee is concave whereas the maxillary curve is convex.
-It was described by Von Spee as a 4" cylinder that engages the occlusal surfaces.
-It is called a compensating curve of the dental arch.
There is another: the Curve of Wilson. Clinically, it relates to the anterior overbite: the deeper the curve, the deeper the overbite.
MANDIBULAR FIRST BICUSPID
Facial: The outline is very nearly symmetrical bilaterally, displaying a large, pointed buccal cusp. From it descends a large, well developed buccal ridge.
Lingual: This tooth has the smallest and most ill-defined lingual cusp of any of the premolars. A distinctive feature is the mesiolingual developmental groove
Proximal: The large buccal cusp tip is centered over the root tip, about at the long axis of this tooth. The very large buccal cusp and much reduced lingual cusp are very evident. You should keep in mind that the mesial marginal ridge is more cervical than the distal contact ridge; each anticipate the shape of their respective adjacent teeth.
Occlusal: The occlusal outline is diamond-shaped. The large buccal cusp dominates the occlusal surface. Marginal ridges are well developed and the mesiolingual developmental groove is consistently present. There are mesial and distal fossae with pits,
Contact Points: When viewed from the facial, each contact area/height of curvature is at about the same height.
Root Surface:-The root of the mandibular first bicuspid is usually single, but on occasion can be bifurcated (two roots).
Interarch relationship can be viewed from a stationary (fixed) and a dynamic (movable ) perspective
1.Stationary Relationship
a) .Centric Relation is the most superior relationship of the condyle of the mandible to the articular fossa of the temporal bone as determined by the bones ligaments. and muscles of the temporomandibular joint; in an ideal dentition it is the same as centric occlusion
Centric occlusion is habitual occlusion where maximum intercuspation occurs
The characteristics of centric occlusion are
(1) Overjet: or that characteristic of maxillary teeth to overlap the mandibular teeth in a horizontal direction by 1 to 2 mm the maxilla arch is slightly larger; functions to protect the narrow edge of the incisors and provide for an intercusping relation of posterior teeth
(2) Overbite or that characteristic of maxillary anterior teeth to overlap the mandibular anterior teeth in a vertical direction by a third of the lower crown height facilitates scissor like function of incisors
(3) Intercuspation. or that characteristic of posterior teeth to intermesh in a faciolingual direction The mandibular facial and maxillary lingual cusp are centric cusps yhat contact interocclusally in the opposing arch
(4) Interdigitation, or that characteristic_of that tooth to articulate with two opposing teeth (except for the mandibular central incisors and the maxillary last molars); a mandibular tooth occludes with the same tooth in the upper arch and the one mesial to it; a maxillary tooth occludes with the same tooth in the mandibular arch and the one distal to it.
2. Dynamic interarch relationshjps are result of functional mandibular movements that start and end with centric occlusion during mastication
a. Mandibular movements are
(1) Depression (opening)
(2) Elevation (closing)
(3) Protrusion (thrust forward)
(4) Retrusion (bring back)
(5) Lateral movements right and left; one side is always the working side and one the balancing or nonworking side
b. Mandibular movements from centric occlusion are guided by the maxillary teeth
(1) Protrusion is guided by the incisors called incisal guidence
(2) Lateral movments are guided by the Canines on the working side in young, unworn dentitions (cuspid rise or cuspid protected occlusion); guided by incisors and posterior teeth in older worn. dentition (incisal/group guidance)
c. As mandibular movements commence from centric occlusion, posterior teeth should disengage in protrusion the posterior teeth on the balancing side should disengage in lateral movement
d. If tooth contact occurs where teeth should be disengaged, occlusal interference or premature contacts exist.
Dentin
1. Composition
a. Inorganic (70%)—calcium hydroxyapatite crystals.
b. Organic (30%)—water and type I collagen.
2. Types of dentin
a. Primary dentin
(1) Dentin formed during tooth development, before completion of root formation.
It constitutes the majority of dentin found in a tooth.
(2) It consists of a normal organization of dentinal tubules.
(3) Circumpulpal dentin
(a) The layer of primary dentin that surrounds the pulp chamber. It is formed after the mantle dentin.
(b) Its collagen fibers are parallel to the DEJ.
b. Secondary dentin
(1) Dentin formed after root formation is complete.
(2) Is deposited unevenly around the pulp chamber, forming along the layer of dentin closest to the pulp.
It therefore contributes to the decrease in the size of the pulp chamber as one ages.
(3) It consists of a normal, or slightly less regular, organization of dentinal tubules. However,
as compared to primary dentin, it is deposited at a slower rate.
(4) Although the dentinal tubules in secondary dentin can be continuous with those in primary
dentin, there is usually a tubular angle change between the two layers.
c. Tertiary (reparative, reactive) dentin
(1) Dentin that is formed in localized areas in response to trauma or other stimuli such as caries, tooth wear, or dental work.
(2) Its consistency and organization vary. It has no defined dentinal tubule pattern
d. Mantle dentin
(1) The outermost layer of dentin
(2) Is the first layer of dentin laid down by odontoblasts adjacent to the DEJ.
(3) Is slightly less mineralized than primary dentin.
(4) Has collagen fibers that are perpendicular to the DEJ.
(5) Dentinal tubules branch abundantly in this area.
e. Sclerotic (transparent) dentin
(1) Describes dentinal tubules that have become occluded with calcified material .
(2) Occurs when the odontoblastic processes retreat, filling the dentinal tubule with calcium phosphate crystals.
(3) Occurs with aging.
f. Dead tracts
(1) When odontoblasts die, they leave behind empty dentinal tubules, or dead tracts.
(2) Occurs with aging or trauma.
(3) Empty tubules are potential paths for bacterial invasion.
3. Structural characteristics and microscopic features:
a. Dentinal tubules
(1) Tubules extend from the DEJ to the pulp chamber.
(2) The tubules taper peripherally (i.e., their diameters are wider as they get closer to the pulp). Since the tubules are distanced farther apart at the periphery, the density of tubules is greater closer to the pulp.
(3) Each tubule contains an odontoblastic process or Tomes’ fiber.
Odontoblastic processes are characterized by the presence of a network of microtubules, with
Occasional mitochondria and vesicles present.
Note: the odontoblast’s cell body remains in the pulp chamber.
(4) Coronal tubules follow an S-shaped path, which may result from the crowding of odontoblasts as they migrate toward the pulp during dentin formation.
b. Peritubular dentin (intratubular dentin)
(1) Is deposited on the walls of the dentinal tubule, which affects (i.e., narrows)the diameter of the tubule .
(2) It differs from intertubular dentin by lacking a collagenous fibrous matrix. It is also more mineralized than intertubular dentin.
c. Intertubular dentin
(1) The main part of dentin, which fills the space between dentinal tubules
(2) Is mineralized and contains a collagenous matrix.
d. Interglobular dentin
(1) Areas of hypomineralized or unmineralized dentin caused by the failure of globules or calcospherites to fuse uniformly with mature dentin.
(2) Dentinal tubules are left undisturbed as they pass through interglobular dentin; however,
No peritubular dentin is present.
(3) Interglobular dentin is found in the:
(a) Crown—just beneath the mantle dentin.
(b) Root—beneath the dentinocemental junction, giving the root the appearance of a granular
layer (of Tomes).
e. Incremental lines
(1) Dentin is deposited at a daily rate of approximately 4 microns.
(2) As dentin is laid down, small differences in collagen fiber orientation result in the formation of incremental lines.
(3) Called imbrication lines of von Ebner.
(a) Every 5 days, or about every 20 µm, the changes in collagen fiber orientation appear more
accentuated. This results in a darker staining line, known as the imbrication line of von
Ebner.
(b) These lines are similar to the lines of Retzius seen in enamel.
f. Contour lines of Owen
(1) An optical phenomenon that occurs when the secondary curvatures of adjacent dentinal tubules coincide, resulting in the appearance of lines known as contour lines of Owen.
(2) Contour lines of Owen may also refer to lines that appear similar to those just described; however, these lines result from disturbances in mineralization.
g. Granular layer of Tomes
(1) A granular or spotty-appearing band that can be observed on the root surface adjacent to the dentinocemental junction, just beneath the cementum.
Maxillary Second Deciduous Molar.
-The notation is A or J.
-It looks like a first permanent molar
-There are three roots.
-Usually it has four well developed cusps.
-It is somwhat rhomboidal in outline.
-They often have the Carabelli trait.
- the shape the maxillary first permanent molar strongly resembles that of the adjacent deciduous second molar.
Transient structures during tooth development
Enamel knot: Thickening of the internal dental epithelium at the center of the dental organ.
Enamel cord: Epithelial proliferation that seems to divide the dental organ in two.
Review the role of these two structures
Enamel niche: It is an artifact that is produced during section of the tissue. It occurs because the dental organ is a sheet of proliferating cells rather than a single strand. It looks like a concavity that contains ectomesenchyme.