Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

Periodontal ligament

Composition

a. Consists mostly of collagenous (alveolodental) fibers.
Note: the portions of the fibers embedded in cementum and the alveolar bone proper are known as Sharpey’s fibers.

b. Oxytalan fibers (a type of elastic fiber) are also present. Although their function is unknown, they may play a role in the regulation of vascular flow.

c. Contains mostly type I collagen, although smaller amounts of type III and XII collagen are also present.

d. Has a rich vascular and nerve supply.

Both sensory and autonomic nerves are present.

(1) The sensory nerves in the PDL differ from pulpal nerves in that PDL nerve endings can detect both proprioception (via mechanoreceptors) and pain (via nociceptors).

(2) The autonomic nerve fibers are associated with the regulation of periodontal vascular flow.

(3) Nerve fibers may be myelinated (sensory) or unmyelinated (sensory or autonomic).

Cells

a. Cells present in the PDL include fibroblasts; epithelial cells; cementoblasts and cementoclasts; osteoblasts and osteoclasts; and immune cells such as macrophages, mast cells, or eosinophils.

b. These cells play a role in forming or destroying cementum, alveolar bone, or PDL.

c. Epithelial cells often appear in clusters, known as rests of Malassez.

Types of alveolodental fibers

a. Alveolar crest fibers
—radiate downward from cementum, just below the cementoenamel junction (CEJ), to the crest of alveolar bone.

b. Horizontal fibers—radiate perpendicular to the tooth surface from cementum to alveolar bone, just below the alveolar crest.

c. Oblique fibers

(1) Radiate downward from the alveolar bone to cementum.

(2) The most numerous type of PDL fiber.

(3) Resist occlusal forces that occur along the long axis of the tooth.

d. Apical fibers

(1) Radiate from the cementum at the apex of the tooth into the alveolar bone.

(2) Resist forces that pull the tooth in an occlusal direction (i.e., forces that try to pull the tooth from its socket).

e. Interradicular fibers

(1) Only found in the furcal area of multi-rooted teeth.

(2) Resist forces that pull the tooth in an occlusal direction.

Gingival fibers

a. The fibers of the gingival ligament are not strictly part of the PDL, but they play a role in the maintainence of the periodontium.

b. Gingival fibers are packed in groups and are found in the lamina propria of gingiva

c. Gingival fiber groups:

(1) Transseptal (interdental) fibers

(a) Extend from the cementum of one tooth (just apical to the junctional epithelium), over the alveolar crest, to the corresponding area of the cementum of the adjacent tooth.

(b) Collectively, these fibers form the interdental ligament , which functions to resist rotational forces and retain adjacent teeth in interproximal contact.

(c) These fibers have been implicated as a major cause of postretention relapse of teeth that have undergone orthodontic treatment.

(2) Circular (circumferential) fibers

(a) Extend around tooth near the CEJ.

(b) Function in binding free gingiva to the tooth and resisting rotational forces.

(3) Alveologingival fibers—extend from the alveolar crest to lamina propria of free and attached gingiva.

(4) Dentogingival fibers—extend from cervical cementum to the lamina propria of free and attached gingiva.

(5) Dentoperiosteal fibers—extend from cervical cementum, over the alveolar crest, to the periosteum of the alveolar bone.

Gingiva

The connection between the gingiva and the tooth is called the dentogingival junction. This junction has three epithelial types: gingival, sulcular, and junctional epithelium. These three types form from a mass of epithelial cells known as the epithelial cuff between the tooth and the mouth.

Much about gingival formation is not fully understood, but it is known that hemidesmosomes form between the gingival epithelium and the tooth and are responsible for the primary epithelial attachment. Hemidesmosomes provide anchorage between cells through small filament-like structures provided by the remnants of ameloblasts. Once this occurs, junctional epithelium forms from reduced enamel epithelium, one of the products of the enamel organ, and divides rapidly. This results in the perpetually increasing size of the junctional epithelial layer and the isolation of the remenants of ameloblasts from any source of nutrition. As the ameloblasts degenerate, a gingival sulcus is created.

MORPHOLOGY OF THE DECIDUOUS TEETH

 

Deciduous Anterior Teeth.

 -The primary anteriors are morphologically similar to the permanent anteriors.

-The incisors are relatively simple in their morphology.

-The roots are long and narrow.

-When compared to the permanent incisors, the mesiodistal dimension is relatively larger when compared to axial crown length

-At the time of eruption, mamelons are not present in deciduous incisors

-They are narrower mesiodistally than their permanent successors.

TYPES OF TEETH

The human permanent dentition is divided into four classes of teeth based on appearance and function or position.

Incisors, Canines, Premolars & Molars

Enamel

Composition: 96% mineral, 4% organic material and water
Crystalline calcium phosphate, hydroxyapatite
Physical characteristics: Hardness compared to mild steel; enamel is brittle
Support from dentin is necessary
Enamel has varies in thickness

Structure of enamel

Ground sections of enamel disclose the information that we have about enamel
Enamel is composed of rods
In the past we used the term prism (do not use)
 

Enamel rod
The rod has a cylinder-like shape and is composed of crystals that run parallel to the longitudinal axis of the rod. At the periphery of the rod the crystals flare laterally.
Interrod region: surrounds each rod; contain more enamel protein (fish scale appearance)
Rod sheath: boundary where crystals of rods meet those of the interrod region at sharp angles (We used to describe that as a keyhole configuration)
Each ameloblast forms one rod and together with adjacent ameloblasts the interrod region Very close to dentin there is no rod structure since the Tomes' processes develop after the first enamel is formed.
Striae of Retzius and cross striations
Incremental lines
Enamel structure is altered along these lines
Cross striations are also a form of incremental lines highlighting the daily secretory activity of ameloblasts

Bands of Hunter and Schreger
Optical phenomenon produced by changes in rod direction

Gnarled enamel
Twisting of rods around each other over the cusps of teeth

Enamel tufts and lamellae
They are like geologic faults
Tufts project from the DE junction, appear branched and contain greater concentrations of enamel protein than enamel
Lamellae extend from the enamel surface
Enamel spindles

Perikymata
Shallow furrows on surface of enamel formed by the striae of Retzius

Formation and Eruption of Deciduous Teeth.

-Calcification begins during the fourth month of fetal life. By the end of the sixth month, all of the deciduous teeth have begun calcification.

-By the time the deciduous teeth have fully erupted (two to two and one half years of age), cacification of the crowns of permanent teeth is under way. First permanent molars have begun cacification at the time of birth. -Here are some things to know about eruption patterns:

(1) Teeth tend to erupt in pairs. 

(2) Usually, lower deciduous teeth erupt first. Congenitally missing deciduous teeth is infrequent. Usually, the lower deciduous central incisors are thefirst to erupt thus initiating the deciduous dentition. The appearance of the deciduous second molars completes the deciduous dentition by 2 to 2 1/2 years of age.

- Deciduous teeth shed earlier and permanent teeth erupt earlier in girls.

- The orderly pattern of eruption and their orderly replacement by permanent teeth is important.

- order for eruption of the deciduous teeth is as follows:

(1) Central incisor.........Lower 6 ½ months,         Upper 7 ½ months

(2) Lateral incisor.........Lower 7 months,   Upper 8 months

(3) First deciduous molar...Lower 12-16 months, Upper 12-16 months

(4) Deciduous canine........Lower 16-20 months, Upper 16-20 months

(5) Second deciduous molar..Lower 20-30 months, Upper 20-30 months

Alveolar bone (process)

1. The bone in the jaws that contains the teeth alveoli (sockets).

2. Three types of bone :

a. Cribriform plate (alveolar bone proper)

(1) Directly lines and forms the tooth socket. It is compact bone that contains many holes, allowing for the passage of blood vessels. It has no periosteum.

(2) Serves as the attachment site for PDL (Sharpey’s) fibers.

(3) The tooth socket is constantly being remodeled in response to occlusal forces. The bone laid down on the cribriform plate, which also provides attachment for PDL fibers, is known as bundle bone.

(4) It is radiographically known as the lamina dura.

b. Cortical (compact) bone

(1) Lines the buccal and lingual surfaces of the mandible and maxilla.

(2) Is typical compact bone with a periosteum and contains Haversian systems.

(3) Is generally thinner in the maxilla and thicker in the mandible, especially around the buccal area of  the mandibular premolar and molar.

c. Trabecular (cancellous, spongy) bone

(1) Is typical cancellous bone containing Haversian systems.

(2) Is absent in the maxillary anterior teeth region.

 

3. Alveolar crest (septa)

a. The height of the alveolar crest is usually 1.5 to 2 mm below the CEJ junction.

b. The width is determined by the shape of adjacent teeth.

(1) Narrow crests—found between teeth with relatively flat surfaces.

(2) Widened crests—found between teeth with convex surfaces or teeth spaced apart.

Explore by Exams