NEET MDS Lessons
Dental Anatomy
ARTICULAR SURFACES COVERED BY FIBROUS TISSUE
TMJ is an exception form other synovial joints. Two other joints, the acromio- and sternoclavicular joints are similar to the TMJ. Mandible & clavicle derive from intramembranous ossificiation.
Histologic
- Fibrous layer: collagen type I, avascular (self-contained and replicating)
- Proliferating zone that formes condylar cartilage
- Condylar cartilage is fibrocartilage that does not play role in articulation nor has formal function
- Capsule: dense collagenous tissue (includes the articular eminence)
- Synovial membrane: lines capsule (does not cover disk except posterior region); contains folds (increase in pathologic conditions) and villi
Two layers: a cellular intima (synovial cells in fiber-free matrix) and a vascular subintima
Synovial cells: A (macrophage-like) syntesize hyaluronate
B (fibroblast-like) add protein in the fluid
Synovial fluid: plasma with mucin and proteins, cells
Liquid environment: lubrication, ?nutrition - Disk: separates the cavity into two comprartments, type I collagen
anterior and posterior portions
anetiorly it divides into two lamellae one towards the capsule, the other towards the condyle
vascular in the preiphery, avascular in the center - Ligaments: nonelastic collagenous structures. One ligament worth mentioning is the lateral or temporomandibular ligament. Also there are the spheno- and stylomandibular with debatable functional role.
Innervations
Ruffini |
Posture |
Dynamic and static balance |
Pacini |
Dynamic mechanoreception |
Movement accelerator |
Golgi |
Static mechanoreception |
Protection (ligament) |
Free |
Pain |
Protection joint |
MAXILLARY SECOND BICUSPID
smaller in dimensions. The cusps are not as sharp as the maxillary first bicuspid and have only one root.
Facial: This tooth closely resembles the maxillary first premolar but is a less defined copy of its companion to the mesial. The buccal cusp is shorter, less pointed, and more rounded than the first.
Lingual: Again, this tooth resembles the first. The lingual cusp, however, is more nearly as large as the buccal cusp.
Proximal: Mesial and distal surfaces are rounded. The mesial developmental depression and mesial marginal ridge are not present on the second premolar.
Occlusal: The crown outline is rounded, ovoid, and is less clearly defined than is the first.
Contact Points; When viewed from the facial, the distal contact area is located more cervically than is the mesial contact area.
AGE CHANGES
Progressive apical migration of the dentogingival junction.
Toothbrush abrasion of the area can expose dentin that can cause root caries and tooth mobility.
Histology of the alveolar bone
Near the end of the 2nd month of fetal life, mandible and maxilla form a groove that is opened toward the surface of the oral cavity.
As tooth germs start to develop, bony septa form gradually. The alveolar process starts developing strictly during tooth eruption.
The alveolar process is the bone that contains the sockets (alveoli) for the teeth and consists of
a) outer cortical plates
b) a central spongiosa and
c) bone lining the alveolus (bundle bone)
The alveolar crest is found 1.5-2.0 mm below the level of the CEJ.
If you draw a line connecting the CE junctions of adjacent teeth, this line should be parallel to the alveolar crest. If the line is not parallel, then there is high probability of periodontal disease.
Bundle Bone
The bundle bone provides attachment to the periodontal ligament fibers. It is perforated by many foramina that transmit nerves and vessels (cribiform plate). Embedded within the bone are the extrinsic fiber bundles of the PDL mineralized only at the periphery. Radiographically, the bundle bone is the lamina dura. The lining of the alveolus is fairly smooth in the young but rougher in the adults.
Clinical considerations
Resorption and regeneration of alveolar bone
This process can occur during orthodontic movement of teeth. Bone is resorbed on the side of pressure and opposed on the site of tension.
Osteoporosis
Osteoporosis of the alveolar process can be caused by inactivity of tooth that does not have an antagonist
MAXILLARY FIRST BICUSPID (PREMOLARS)
It is considered to be the typical bicuspid. (The word "bicuspid" means "having two cusps.")
Facial: The buccal surface is quite rounded and this tooth resembles the maxillary canine. The buccal cusp is long; from that cusp tip, the prominent buccal ridge descends to the cervical line of the tooth.
Lingual: The lingual cusp is smaller and the tip of that cusp is shifted toward the mesial. The lingual surface is rounded in all aspects.
Proximal: The mesial aspect of this tooth has a distinctive concavity in the cervical third that extends onto the root. It is called variously the mesial developmental depression, mesial concavity, or the 'canine fossa'--a misleading description since it is on the premolar. The distal aspect of the maxillary first permanent molar also has a developmental depression. The mesial marginal developmental groove is a distinctive feature of this tooth.
Occlusal: There are two well-defined cusps buccal and lingual. The larger cusp is the buccal; its cusp tip is located midway mesiodistally. The lingual cusp tip is shifted mesially. The occlusal outline presents a hexagonal appearance. On the mesial marginal ridge is a distinctive feature, the mesial marginal developmental groove.
Contact Points;The distal contact area is located more buccal than is the mesial contact area.
Root Surface:-The root is quite flat on the mesial and distal surfaces. In about 50 percent of maxillary first bicuspids, the root is divided in the apical third, and when it so divided, the tips of the facial and lingual roots are slender and finely tapered.
Cementum & Cementogenesis
Cementum formation is called cementogenesis and occurs late in the development of teeth. Cementoblasts are the cells responsible for cementogenesis. Two types of cementum form: cellular and acellular.
Acellular cementum forms first. The cementoblasts differentiate from follicular cells, which can only reach the surface of the tooth's root once Hertwig's Epithelial Root Sheath (HERS) has begun to deteriorate. The cementoblasts secrete fine collagen fibrils along the root surface at right angles before migrating away from the tooth. As the cementoblasts move, more collagen is deposited to lengthen and thicken the bundles of fibers. Noncollagenous proteins, such as bone sialoprotein and osteocalcin, are also secreted. Acellular cementum contains a secreted matrix of proteins and fibers. As mineralization takes place, the cementoblasts move away from the cementum, and the fibers left along the surface eventually join the forming periodontal ligmaments.
Cellular cementum develops after most of the tooth formation is complete and after the tooth occludes (in contact) with a tooth in the opposite arch. This type of cementum forms around the fiber bundles of the periodontal ligaments. The cementoblasts forming cellular cementum become trapped in the cementum they produce.
The origin of the formative cementoblasts is believed to be different for cellular cementum and acellular cementum. One of the major current hypotheses is that cells producing cellular cementum migrate from the adjacent area of bone, while cells producing acellular cementum arise from the dental follicle. Nonetheless, it is known that cellular cementum is usually not found in teeth with one root. In premolars and molars, cellular cementum is found only in the part of the root closest to the apex and in interradicular areas between multiple roots.
MANDIBULAR THIRD MOLAR
Facial: The crown is often short and has a rounded outline.
Lingual: Similarly, the crown is short and the crown is bulbous.
Proximal: Mesially and distally, this tooth resembles the first and second molars. The crown of the third molar, however, is shorter than either of the other molars
Occlusal: Four or five cusps may be present. Occlusal surface is a same as of the first or second molar, or poorly developed with many accessory grooves. The occlusal outline is often ovoid and the occlusal surface is constricted. Occasionally, the surface has so many grooves that it is described as crenulated--a condition seen in the great apes
Contact Points; The rounded mesial surface has its contact area more cervical than any other lower molar. There is no tooth distal to the third molar..
Roots:-The roots, two in number, are shorter in length and tend to be fused together. they show a distinct distal curve
Interarch relationship can be viewed from a stationary (fixed) and a dynamic (movable ) perspective
1.Stationary Relationship
a) .Centric Relation is the most superior relationship of the condyle of the mandible to the articular fossa of the temporal bone as determined by the bones ligaments. and muscles of the temporomandibular joint; in an ideal dentition it is the same as centric occlusion
Centric occlusion is habitual occlusion where maximum intercuspation occurs
The characteristics of centric occlusion are
(1) Overjet: or that characteristic of maxillary teeth to overlap the mandibular teeth in a horizontal direction by 1 to 2 mm the maxilla arch is slightly larger; functions to protect the narrow edge of the incisors and provide for an intercusping relation of posterior teeth
(2) Overbite or that characteristic of maxillary anterior teeth to overlap the mandibular anterior teeth in a vertical direction by a third of the lower crown height facilitates scissor like function of incisors
(3) Intercuspation. or that characteristic of posterior teeth to intermesh in a faciolingual direction The mandibular facial and maxillary lingual cusp are centric cusps yhat contact interocclusally in the opposing arch
(4) Interdigitation, or that characteristic_of that tooth to articulate with two opposing teeth (except for the mandibular central incisors and the maxillary last molars); a mandibular tooth occludes with the same tooth in the upper arch and the one mesial to it; a maxillary tooth occludes with the same tooth in the mandibular arch and the one distal to it.
2. Dynamic interarch relationshjps are result of functional mandibular movements that start and end with centric occlusion during mastication
a. Mandibular movements are
(1) Depression (opening)
(2) Elevation (closing)
(3) Protrusion (thrust forward)
(4) Retrusion (bring back)
(5) Lateral movements right and left; one side is always the working side and one the balancing or nonworking side
b. Mandibular movements from centric occlusion are guided by the maxillary teeth
(1) Protrusion is guided by the incisors called incisal guidence
(2) Lateral movments are guided by the Canines on the working side in young, unworn dentitions (cuspid rise or cuspid protected occlusion); guided by incisors and posterior teeth in older worn. dentition (incisal/group guidance)
c. As mandibular movements commence from centric occlusion, posterior teeth should disengage in protrusion the posterior teeth on the balancing side should disengage in lateral movement
d. If tooth contact occurs where teeth should be disengaged, occlusal interference or premature contacts exist.