Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

Tooth eruption Theories

Tooth eruption occurs when the teeth enter the mouth and become visible. Although researchers agree that tooth eruption is a complex process, there is little agreement on the identity of the mechanism that controls eruption. Some commonly held theories that have been disproven over time include: (1) the tooth is pushed upward into the mouth by the growth of the tooth's root, (2) the tooth is pushed upward by the growth of the bone around the tooth, (3) the tooth is pushed upward by vascular pressure, and (4) the tooth is pushed upward by the cushioned hammock. The cushioned hammock theory, first proposed by Harry Sicher, was taught widely from the 1930s to the 1950s. This theory postulated that a ligament below a tooth, which Sicher observed on under a microscope on a histologic slide, was responsible for eruption. Later, the "ligament" Sicher observed was determined to be merely an artifact created in the process of preparing the slide.

The most widely held current theory is that while several forces might be involved in eruption, the periodontal ligaments provide the main impetus for the process. Theorists hypothesize that the periodontal ligaments promote eruption through the shrinking and cross-linking of their collagen fibers and the contraction of their fibroblasts.

Although tooth eruption occurs at different times for different people, a general eruption timeline exists. Typically, humans have 20 primary (baby) teeth and 32 permanent teeth. Tooth eruption has three stages. The first, known as deciduous dentition stage, occurs when only primary teeth are visible. Once the first permanent tooth erupts into the mouth, the teeth are in the mixed (or transitional) dentition. After the last primary tooth falls out of the mouth—a process known as exfoliation—the teeth are in the permanent dentition.

Primary dentition starts on the arrival of the mandibular central incisors, usually at eight months, and lasts until the first permanent molars appear in the mouth, usually at six years. The primary teeth typically erupt in the following order: (1) central incisor, (2) lateral incisor, (3) first molar, (4) canine, and (5) second molar. As a general rule, four teeth erupt for every six months of life, mandibular teeth erupt before maxillary teeth, and teeth erupt sooner in females than males. During primary dentition, the tooth buds of permanent teeth develop below the primary teeth, close to the palate or tongue.

Mixed dentition starts when the first permanent molar appears in the mouth, usually at six years, and lasts until the last primary tooth is lost, usually at eleven or twelve years. Permanent teeth in the maxilla erupt in a different order from permanent teeth on the mandible. Maxillary teeth erupt in the following order: (1) first molar (2) central incisor, (3) lateral incisor, (4) first premolar, (5) second premolar, (6) canine, (7) second molar, and (8) third molar. Mandibular teeth erupt in the following order: (1) first molar (2) central incisor, (3) lateral incisor, (4) canine, (5) first premolar, (6) second premolar, (7) second molar, and (8) third molar. Since there are no premolars in the primary dentition, the primary molars are replaced by permanent premolars. If any primary teeth are lost before permanent teeth are ready to replace them, some posterior teeth may drift forward and cause space to be lost in the mouth. This may cause crowding and/or misplacement once the permanent teeth erupt, which is usually referred to as malocclusion. Orthodontics may be required in such circumstances for an individual to achieve a straight set of teeth.

The permanent dentition begins when the last primary tooth is lost, usually at 11 to 12 years, and lasts for the rest of a person's life or until all of the teeth are lost (edentulism). During this stage, third molars (also called "wisdom teeth") are frequently extracted because of decay, pain or impactions. The main reasons for tooth loss are decay or periodontal disease.

Periodontal ligament development

Cells from the dental follicle give rise to the periodontal ligaments (PDL).

Formation of the periodontal ligaments begins with ligament fibroblasts from the dental follicle. These fibroblasts secrete collagen, which interacts with fibers on the surfaces of adjacent bone and cementum. This interaction leads to an attachment that develops as the tooth erupts into the mouth. The occlusion, which is the arrangement of teeth and how teeth in opposite arches come in contact with one another, continually affects the formation of periodontal ligaments. This perpetual creation of periodontal ligaments leads to the formation of groups of fibers in different orientations, such as horizontal and oblique fibers.

MORPHOLOGY OF THE DECIDUOUS TEETH

 

Deciduous Anterior Teeth.

 -The primary anteriors are morphologically similar to the permanent anteriors.

-The incisors are relatively simple in their morphology.

-The roots are long and narrow.

-When compared to the permanent incisors, the mesiodistal dimension is relatively larger when compared to axial crown length

-At the time of eruption, mamelons are not present in deciduous incisors

-They are narrower mesiodistally than their permanent successors.

MANDIBULAR LATERAL INCISORS

The mandibular incisor is a little wider mesiodistal than the mandibular central incisor, and the crown is slightly longer from the incisal edge to the cervical line.

Facial Surface:-The facial surface is less symmetrical than the facial surface of the mandibular central incisor. The incisal edge slopes upward toward the mesioincisal angle, which is slightly less than 90°. The distoincisal angle is rounded. The mesial border is more nearly straight than the distal border.

Lingual Surface:- The incisal portion of the lingual surface is concave. The cingulum is quite large but blends in smoothly with the rest of the surface.

Root Surface:-The root is single and extremely flattened on its mesial and distal surfaces.

MANDIBULAR SECOND BICUSPID

Facial: From this aspect, the tooth somewhat resembles the first, but the buccal cusp is less pronounced. The tooth is larger than the first.

Lingual: Two significant variations are seen in this view. The most common is the three-cusp form which has two lingual cusps. The mesial of those is the larger of the two. The other form is the two-cusp for with a single lingual cusp. In that variant, the lingual cusp tip is shifted to the mesial.

Proximal: The buccal cusp is shorter than the first. The lingual cusp (or cusps) are much better developed than the first and give the lingual a full, well-developed profile.

Occlusal: The two or three cusp versions become clearly evident. In the three-cusp version, the developmental grooves present a distinctive 'Y' shape and have a central pit. In the two cusp version, a single developmental groove crosses the transverse ridge from mesial to distal

Contact Points; Height of Curvature: From the facial, the mesial contact is more occlusal than the distal contact.The distal marginal ridge is lower than the mesial marginal ridge

Root Surface:-The root of the tooth is single, that is usually larger than that of the first premolar  

the lower second premolar is larger than the first, while the upper first premolar is just slightly larger than the upper second

There may be one or two lingual cusps

MAXILLARY FIRST BICUSPID (PREMOLARS)

It is considered to be the typical bicuspid. (The word "bicuspid" means "having two cusps.")

Facial: The buccal surface is quite rounded and this tooth resembles the maxillary canine. The buccal cusp is long; from that cusp tip, the prominent buccal ridge descends to the cervical line of the tooth.

Lingual: The lingual cusp is smaller and the tip of that cusp is shifted toward the mesial. The lingual surface is rounded in all aspects.

Proximal: The mesial aspect of this tooth has a distinctive concavity in the cervical third that extends onto the root. It is called variously the mesial developmental depression, mesial concavity, or the 'canine fossa'--a misleading description since it is on the premolar. The distal aspect of the maxillary first permanent molar also has a developmental depression. The mesial marginal developmental groove is a distinctive feature of this tooth.

Occlusal: There are two well-defined cusps buccal and lingual. The larger cusp is the buccal; its cusp tip is located midway mesiodistally. The lingual cusp tip is shifted mesially. The occlusal outline presents a hexagonal appearance. On the mesial marginal ridge is a distinctive feature, the mesial marginal developmental groove.

Contact Points;The distal contact area is located more buccal than is the mesial contact area.

Root Surface:-The root is quite flat on the mesial and distal surfaces. In about 50 percent of maxillary first bicuspids, the root is divided in the apical third, and when it so divided, the tips of the facial and lingual roots are slender and finely tapered.

The periodontium, which is the supporting structure of a tooth, consists of the cementum, periodontal ligaments, gingiva, and alveolar bone. Cementum is the only one of these that is a part of a tooth. Alveolar bone surrounds the roots of teeth to provide support and creates what is commonly called a "socket". Periodontal ligaments connect the alveolar bone to the cementum, and the gingiva is the surrounding tissue visible in the mouth.

Periodontal ligaments

Histology of the Periodontal Ligament (PDL)

Embryogenesis of the periodontal ligament
The PDL forms from the dental follicle shortly after root development begins
The periodontal ligament is characterized by connective tissue. The thinnest portion is at the middle third of the root. Its width decreases with age. It is a tissue with a high turnover rate.

Explore by Exams