Talk to us?

Dental Anatomy - NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

Age changes in the dentition

I. After the teeth have reached full occlusion, microscopic tooth movements occur to compensate for wear at the contact area (Mesial Drift) and occlusal surfaces (by Deposition of cementum at the root apex)

2. Attrition of incisal ridges and cusp tips may be so severe that dentin may become exposed and intrinsically stained

3. Secondary dentin may be formed in response to dental caries, trauma, and aging and result in decreased pulp size and tooth sensation

MAXILLARY LATERAL INCISORS

it is shorter, narrower, and thinner.

Facial: The maxillary lateral incisor resembles the central incisor, but is narrower mesio-distally. The mesial outline resembles the adjacent central incisor; the distal outline--and particularly the distal incisal angle is more rounded than the mesial incisal angle (which resembles that of the adjacent central incisor. The distal incisal angle resembling the mesial of the adjacent canine.

Lingual: On the lingual surface, the marginal ridges are usually prominent and terminate into a prominent cingulum. There is often a deep pit where the marginal ridges converge gingivally. A developmental groove often extends across the distal of the cingulum onto the root continuing for part or all of its length.

Proximal: In proximal view, the maxillary lateral incisor resembles the central except that the root appears longer--about 1 1/2 times longer than the crown. A line through the long axis of the tooth bisects the crown.

Incisal: In incisal view, this tooth can resemble either the central or the canine to varying degrees. The tooth is narrower mesiodistally than the upper central incisor; however, it is nearly as thick labiolingually.

Contact Points: The mesial contact is at the junction of the incisal third and the middle third. The distal contact is is located at the center of the middle third of the distal surface.

Root Surface:-The root is conical (cone-shaped) but somewhat flattened mesiodistally.

MAXILLARY CENTRAL INCISORS

Viewed mesially or distally, a maxillary central incisor looks like a wedge, with the point of the wedge at the incisal (cutting) edge of the tooth.

Facial Surface- The mesial margin is nearly straight and meets the incisal edge at almost a 90° angle, but the distal margin meets the incisal edge in a curve. The incisal edge is straight, but the cervical margin is curved like a half moon. Two developmental grooves are on the facial surface.

Lingual Surface:- The lingual aspect presents a distinctive lingual fossa that is bordered by mesial and distal marginal ridges, the incisal edge, and the prominent cingulum at the gingival. Sometimes a deep pit, the lingual pit, is found in conjunction with a cingulum.

 

Incisal: The crown is roughly triangular in outline; the incisal edge is nearly a straight line, though slightly crescent shaped

Contact Points: The mesial contact point is just about at the incisal, owing to the very sharp mesial incisal angle. The distal contact point is located at the junction of the incisal third and the middle third.

Root Surface:-As with all anterior teeth, the root of the maxillary central incisor is single. This root is from one and one-fourth to one and one-half times the length of the crown. Usually, the apex of the root is inclined slightly distally.

 

Dentin

1. Composition

a. Inorganic (70%)—calcium hydroxyapatite crystals.

b. Organic (30%)—water and type I collagen.

 

2. Types of dentin

a. Primary dentin

(1) Dentin formed during tooth development, before completion of root formation.

It constitutes the majority of dentin found in a tooth.

(2) It consists of a normal organization of dentinal tubules.

(3) Circumpulpal dentin

(a) The layer of primary dentin that surrounds the pulp chamber.  It is formed after the mantle dentin.

(b) Its collagen fibers are parallel to the DEJ.

b. Secondary dentin

(1) Dentin formed after root formation is complete.

(2) Is deposited unevenly around the pulp chamber, forming along the layer of dentin closest to the pulp.

It therefore contributes to the decrease in the size of the pulp chamber as one ages.

(3) It consists of a normal, or slightly less regular, organization of dentinal tubules. However,

as compared to primary dentin, it is deposited at a slower rate.

(4) Although the dentinal tubules in secondary dentin can be continuous with those in primary

dentin, there is usually a tubular angle change between the two layers.

 

c. Tertiary (reparative, reactive) dentin

(1) Dentin that is formed in localized areas in response to trauma or other stimuli such as caries, tooth wear, or dental work.

(2) Its consistency and organization vary. It has no defined dentinal tubule pattern

 

d. Mantle dentin
 

(1) The outermost layer of dentin
(2) Is the first layer of dentin laid down by odontoblasts adjacent to the DEJ.

(3) Is slightly less mineralized than primary dentin.

(4) Has collagen fibers that are perpendicular to the DEJ.

(5) Dentinal tubules branch abundantly in this area.

 

e. Sclerotic (transparent) dentin

(1) Describes dentinal tubules that have become occluded with calcified material .

(2) Occurs when the odontoblastic processes retreat, filling the dentinal tubule with calcium phosphate crystals.

(3) Occurs with aging.


f. Dead tracts

(1) When odontoblasts die, they leave behind empty dentinal tubules, or dead tracts.

(2) Occurs with aging or trauma.

(3) Empty tubules are potential paths for bacterial invasion.

3. Structural characteristics and microscopic features:
 

a. Dentinal tubules

(1) Tubules extend from the DEJ to the pulp chamber.

(2) The tubules taper peripherally (i.e., their diameters are wider as they get closer to the pulp). Since the tubules are distanced farther apart at the periphery, the density of tubules is greater closer to the pulp.

(3) Each tubule contains an odontoblastic process or Tomes’ fiber.

Odontoblastic processes are characterized by the presence of a network of microtubules, with

Occasional mitochondria and vesicles present.

Note: the odontoblast’s cell body remains in the pulp chamber.
 

(4) Coronal tubules follow an S-shaped path, which may result from the crowding of  odontoblasts as they migrate toward the pulp during dentin formation.

 

b. Peritubular dentin (intratubular dentin)

(1) Is deposited on the walls of the dentinal tubule, which affects (i.e., narrows)the diameter of the tubule .

(2) It differs from intertubular dentin by lacking a collagenous fibrous matrix. It is also more mineralized than intertubular dentin.
 

c. Intertubular dentin

(1) The main part of dentin, which fills the space between dentinal tubules

 (2) Is mineralized and contains a collagenous matrix.


d. Interglobular dentin

(1) Areas of hypomineralized or unmineralized dentin caused by the failure of globules or calcospherites to fuse uniformly with mature dentin.

 

(2) Dentinal tubules are left undisturbed as they pass through interglobular dentin; however,

No peritubular dentin is present.

(3) Interglobular dentin is found in the:

(a) Crown—just beneath the mantle dentin.

(b) Root—beneath the dentinocemental junction, giving the root the appearance of a granular

layer (of Tomes).

 

e. Incremental lines

(1) Dentin is deposited at a daily rate of approximately 4 microns.

(2) As dentin is laid down, small differences in collagen fiber orientation result in the formation of incremental lines.

(3) Called imbrication lines of von Ebner.

(a) Every 5 days, or about every 20 µm, the changes in collagen fiber orientation appear more

accentuated. This results in a darker staining line, known as the imbrication line of von

Ebner.

(b) These lines are similar to the lines of Retzius seen in enamel.

 

f. Contour lines of Owen

(1) An optical phenomenon that occurs when the secondary curvatures of adjacent dentinal tubules coincide, resulting in the appearance of lines known as contour lines of Owen.
 

(2) Contour lines of Owen may also refer to lines that appear similar to those just described; however, these lines result from disturbances in mineralization.

 

g. Granular layer of Tomes

(1) A granular or spotty-appearing band that can be observed on the root surface adjacent to the dentinocemental junction, just beneath the cementum.

 

Types of dentitions:

1. Diphyodont. Teeth develop and erupt into their jaws in two generations of teeth. The term literally means two generations of teeth.

2. Monophyodont. a single generation of teeth.

3. Polyphyodont. Teeth develop a lifetime of generations of successional teeth

4. Homodont. all of the teeth in the jaw are alike. They differ from each other only in size.

5. Heterodont. There is distinctive classes of teeth that are regionally specialized.

MANDIBULAR SECOND BICUSPID

Facial: From this aspect, the tooth somewhat resembles the first, but the buccal cusp is less pronounced. The tooth is larger than the first.

Lingual: Two significant variations are seen in this view. The most common is the three-cusp form which has two lingual cusps. The mesial of those is the larger of the two. The other form is the two-cusp for with a single lingual cusp. In that variant, the lingual cusp tip is shifted to the mesial.

Proximal: The buccal cusp is shorter than the first. The lingual cusp (or cusps) are much better developed than the first and give the lingual a full, well-developed profile.

Occlusal: The two or three cusp versions become clearly evident. In the three-cusp version, the developmental grooves present a distinctive 'Y' shape and have a central pit. In the two cusp version, a single developmental groove crosses the transverse ridge from mesial to distal

Contact Points; Height of Curvature: From the facial, the mesial contact is more occlusal than the distal contact.The distal marginal ridge is lower than the mesial marginal ridge

Root Surface:-The root of the tooth is single, that is usually larger than that of the first premolar  

the lower second premolar is larger than the first, while the upper first premolar is just slightly larger than the upper second

There may be one or two lingual cusps

HISTOLOGIC CHANGES OF THE PULP

Regressive changes


Pulp decreases in size by the deposition of dentin.
This can be caused by age, attrition, abrasion, operative procedures, etc.
Cellular organelles decrease in number.

Fibrous changes

They are more obvious in injury rather than aging. Occasionally, scarring may also be apparent.

Pulpal stones or denticles

They can be: a)free, b)attached and/or c)embedded. Also they are devided in two groups: true or false. The true stones (denticles) contain dentinal tubules. The false predominate over the the true and are characterized by concentric layers of calcified material.

Diffuse calcifications

Calcified deposits along the collagen fiber bundles or blood vessels may be observed. They are more often in the root canal portion than the coronal area.

Histology of the Cementum

Cementum is a hard connective tissue that derives from ectomesenchyme.

Embryologically, there are two types of cementum:
Primary cementum: It is acellular and develops slowly as the tooth erupts. It covers the coronal 2/3 of the root and consists of intrinsic and extrinsic fibers (PDL).
Secondary cementum: It is formed after the tooth is in occlusion and consists of extrinsic and intrinsic (they derive from cementoblasts) fibers. It covers mainly the root surface.

Functions of Cementum

It protects the dentin (occludes the dentinal tubules)
It provides attachment of the periodontal fibers
It reverses tooth resorption

Cementum is composed of 90% collagen I and III and ground substance.
50% of cementum is mineralized with hydroxyapatite. Thin at the CE junction, thicker apically.

Explore by Exams