NEET MDS Lessons
Dental Anatomy
Histology of the Pulp
PARTICIPATING CELLS
1. Odontoblasts (body and process)
Most distinctive cells of the pulp
Single layer
The cells are columnar in the coronal portion, cuboidal in the middle portion, flat in the apical portion
Individual odontoblasts communicate with each other via junctions. The number of odontoblasts corresponds to the number of dentinal tubules.
The lifespan of an odontoblast equals the one of a vital tooth.
The morphology of the odontoblasts reflects their functional activity.
(There are three stages that reflect the functional activity of a cell: active, transitional and resting)
The odontoblastic process
2. Fibroblasts
Most numerous cells
Produce collagen fibers and ground substance
Ground substance consists of: proteoglycans and glycoproteins
Again, active and resting cells
Fibroblasts have also capability to degrade collagen
3. Undifferentiated mesenchymal cells A pool of cells from which connective tissue cells can derive.
They are reduced with age.
4. Endothelial cells, Schwann cells, pericytes and immunocompetent cells
MATRIX
It is composed of fibers and ground substance
55% of the fibers are Type I collagen. 45% of the fibers are Type III collagen.
The ground substance is gelatinous in the coronal aspect and more fibrous in the apical.
VASCULARITY
Superior and inferior alveolar arteries that derive from the external carotids
Afferent side of the circulation: arterioles
Efferent side of the circulation: venules
Lymphatics
Small, blind, thin-walled vessels in the coronal region of the pulp and exit via one or two larger vessels.
MANDIBULAR SECOND BICUSPID
Facial: From this aspect, the tooth somewhat resembles the first, but the buccal cusp is less pronounced. The tooth is larger than the first.
Lingual: Two significant variations are seen in this view. The most common is the three-cusp form which has two lingual cusps. The mesial of those is the larger of the two. The other form is the two-cusp for with a single lingual cusp. In that variant, the lingual cusp tip is shifted to the mesial.
Proximal: The buccal cusp is shorter than the first. The lingual cusp (or cusps) are much better developed than the first and give the lingual a full, well-developed profile.
Occlusal: The two or three cusp versions become clearly evident. In the three-cusp version, the developmental grooves present a distinctive 'Y' shape and have a central pit. In the two cusp version, a single developmental groove crosses the transverse ridge from mesial to distal
Contact Points; Height of Curvature: From the facial, the mesial contact is more occlusal than the distal contact.The distal marginal ridge is lower than the mesial marginal ridge
Root Surface:-The root of the tooth is single, that is usually larger than that of the first premolar
the lower second premolar is larger than the first, while the upper first premolar is just slightly larger than the upper second
There may be one or two lingual cusps
Classification of Cementum
- Embryologically
Primary and secondary
2. According to cellular component
Acellular: Thin, Amorphous, First layer to seal the dentin tubules
Cellular: Thick, Better structure, Apical surface
Layers of cellular and acellular cementum alternate (randomly)
3. Based on the origin of the collagenous matrix
Extrinsic
Intrinsic
Mixed
4. Combined classification
a. Primary acellular intinsic fiber cementum
b. Primary acellualar extrinsic fiber cementum
c. Secondary cellular intrinsic fiber cementum
d. Secondary cellular mixed fiber cementum
e. Acellular afibrillar cementum
5. Depending on the location and patterning
Intermediate and mixed stratified cementum
Participating Cells
Cementoblasts
Active
Cells are round, plump with basophilic cytoplasm (rough endoplasmic reticulum)
Inactive
Cells have little cytoplasm
Cementocytes
- Cementocyte lacuna
- cementocyte canaliculus
Cells have fewer organelles compared to cementoblasts. They are found in lacunae and have numerous processes toward the periodontal ligament. Eventually they die due to avascularity
Cementicles
a) free
b) attached
c) embedded
Pulp
1. Four zones—listed from dentin inward
a. Odontoblastic layer
(1) Contains the cell bodies of odontoblasts.
Note: their processes remain in dentinal tubules.
(2) Capillaries, nerve fibers, and dendritic cells may also be present.
b. Cell-free or cell-poor zone (zone of Weil)
(1) Contains capillaries and unmyelinated nerve fibers.
c. Cell-rich zone
(1) Consists mainly of fibroblasts. Macrophages, lymphocytes, and dendritic cells may also be present.
d. The pulp (pulp proper, central zone)
(1) The central mass of the pulp.
(2) Consists of loose connective tissue, larger vessels, and nerves. Also contains fibroblasts and pulpal cells.
2. Pulpal innervation
a. When pulpal nerves are stimulated, they can only transmit one signal pain.
b. There are no proprioceptors in the pulp.
c. Types of nerves:
(1) A-delta fibers
(a) Myelinated sensory nerve fibers.
(b) Stimulation results in the sensation of fast, sharp pain.
(c) Found in the coronal (odontoblastic) area of the pulp.
(2) C-fibers
(a) Unmyelinated sensory nerve fibers.
(b) Transmits information of noxious stimuli centrally.
(c) Stimulation results in pain that is slower, duller, and more diffuse in nature.
(d) Found in the central region of the pulp.
(3) Sympathetic fibers
(a) Found deeper within the pulp.
(b) Sympathetic stimulation results in vasoconstriction of vessels.
Tooth development is commonly divided into the following stages: the bud stage, the cap, the bell, and finally maturation. The staging of tooth development is an attempt to categorize changes that take place along a continuum; frequently it is difficult to decide what stage should be assigned to a particular developing tooth. This determination is further complicated by the varying appearance of different histological sections of the same developing tooth, which can appear to be different stages.
Bud stage
The bud stage is characterized by the appearance of a tooth bud without a clear arrangement of cells. The stage technically begins once epithelial cells proliferate into the ectomesenchyme of the jaw. The tooth bud itself is the group of cells at the end of the dental lamina.
MANDIBULAR FIRST MOLAR
It is the first permanent tooth to erupt.
Facial Surface:- The lower first permanent molar has the widest mesiodistal diameter of all of the molar teeth. Three cusps cusps separated by developmental grooves make on the occlusal outline The mesiobuccal cusp is usually the widest of the cusps. The mesiobuccal cusp is generally considered the largest of the five cusps. The distal root is usually less curved than the mesial root.
Lingual: Three cusps make up the occlusal profile in this view: the mesiolingual, the distolingual, and the distal cusp which is somewhat lower in profile. The mesiobuccal cusp is usually the widest and highest of the three. A short lingual developmental groove separates the two lingual cusps
Proximal: The distinctive height of curvature seen in the cervical third of the buccal surface is called the cervical ridge. The mesial surface may be flat or concave in its cervical third . It is highly convex in its middle and occlusal thirds. The occlusal profile is marked by the mesiobuccal cusp, mesiolingual cusp, and the mesial marginal ridge that connects them. The mesial root is the broadest buccolingually of any of the lower molar roots. The distal surface of the crown is narrower buccolingually than the mesial surface. Three cusps are seen from the distal aspect: the distobuccal cusp, the distal cusp, and the distolingual cusp.
Occlusal There are five cusps. Of them, the mesiobuccal cusp is the largest, the distal cusp is the smallest. The two buccal grooves and the single lingual groove form the "Y" patern distinctive for this tooth
Roots :-The tooth has two roots, a mesial and a distal.
Contact Points; The mesial contact is centered buccolingually just below the marginal ridge. The distal contact is centered over the distal root, but is buccal to the center point of the distal marginal ridge.
Roots: Lower molars have mesial and distal roots. In the first, molar, the mesial root is the largest. It has a distal curvature. The distal root has little curvature and projects distally.
MAXILLARY CUSPIDS (CANINE)
The maxillary cuspid is usually the longest tooth in either jaw. canines are considered the corner stones of the dental arch They are the only teeth in the dentition with a single cusp.
Facial Surface:- The facial surface of the crown differs considerably from that of the maxillary central or lateral incisors. In that the incisal edges of the central and lateral incisor are nearly straight, the cuspid has a definite point, or cusp. There are two cutting edges, the mesioincisal and the distoincisal. The distoincisal cutting edge is the longer of the two. The developmental grooves prominent on the facial surface extending two-thirds of the distance from the tip of the cusp to the cervical line. The distal cusp ridge is longer than the mesial cusp ridge
Lingual Surface: Distinct mesial and distal marginal ridges, a well-devloped cingulum, and the cusp ridges form the boundries of the lingual surface. The prominent lingual ridge extends from the cusp tip to the cingulum, dividing the lingual surface into mesial and distal fossae.
Proximal: The mesial and distal aspects present a triangular outline. They resemble the incisors, but are more robust--especially in the cingulum region
Incisal: The asymmetry of this tooth is readily apparent from this aspect. It usually thicker labiolingually than it is mesiodistally. The tip of the cusp is displaced labially and mesial to the central long axis of this tooth.
Root Surface:-The root is single and is the longest root in the arch. It is usually twice the length of the crown.