NEET MDS Lessons
Dental Anatomy
MANDIBULAR FIRST MOLAR
It is the first permanent tooth to erupt.
Facial Surface:- The lower first permanent molar has the widest mesiodistal diameter of all of the molar teeth. Three cusps cusps separated by developmental grooves make on the occlusal outline The mesiobuccal cusp is usually the widest of the cusps. The mesiobuccal cusp is generally considered the largest of the five cusps. The distal root is usually less curved than the mesial root.
Lingual: Three cusps make up the occlusal profile in this view: the mesiolingual, the distolingual, and the distal cusp which is somewhat lower in profile. The mesiobuccal cusp is usually the widest and highest of the three. A short lingual developmental groove separates the two lingual cusps
Proximal: The distinctive height of curvature seen in the cervical third of the buccal surface is called the cervical ridge. The mesial surface may be flat or concave in its cervical third . It is highly convex in its middle and occlusal thirds. The occlusal profile is marked by the mesiobuccal cusp, mesiolingual cusp, and the mesial marginal ridge that connects them. The mesial root is the broadest buccolingually of any of the lower molar roots. The distal surface of the crown is narrower buccolingually than the mesial surface. Three cusps are seen from the distal aspect: the distobuccal cusp, the distal cusp, and the distolingual cusp.
Occlusal There are five cusps. Of them, the mesiobuccal cusp is the largest, the distal cusp is the smallest. The two buccal grooves and the single lingual groove form the "Y" patern distinctive for this tooth
Roots :-The tooth has two roots, a mesial and a distal.
Contact Points; The mesial contact is centered buccolingually just below the marginal ridge. The distal contact is centered over the distal root, but is buccal to the center point of the distal marginal ridge.
Roots: Lower molars have mesial and distal roots. In the first, molar, the mesial root is the largest. It has a distal curvature. The distal root has little curvature and projects distally.
Maxillary Second Deciduous Molar.
-The notation is A or J.
-It looks like a first permanent molar
-There are three roots.
-Usually it has four well developed cusps.
-It is somwhat rhomboidal in outline.
-They often have the Carabelli trait.
- the shape the maxillary first permanent molar strongly resembles that of the adjacent deciduous second molar.
Compensating curvatures of the individual teeth.
- the gentle curvature of the long axes of certain posterior teeth to exhibit a gentle curvature.
-These are probably analogous to the trabecular patterns seen in the femur and therefore reflect lines of stress experienced during function.
Posteruptive tooth movement.
These movements occur after eruption of the teeth into function in the oral cavity. These movements, known collectively as occlusomesial forces.
A. Continuous tooth eruption eruption of teeth after coming into occlusion. This process compensates for occlusal tooth wear.. Cementum deposition and progressive remodelling of the alveolar bone are the growth processes that provide for continuous tooth movement
B. Physiological mesial drift :Tthe tendency of permanent posterior teeth to migrate mesially in the dental arch both before and after they come into occlusion. Clinically, it compensates for proximal tooth wear.
(1) It describes the tendency of posterior teeth to move anteriorly.
(2) It applies to permanent teeth, not deciduous teeth.
(3) The distal tooth have the stronger is the tendency for drift.
(4) It compensates for proximal wear.
(5) In younger persons, teeth drift bodily; in older persons, they tip and rotate.
(6) Forces that cause it include occlusal forces, PDL contraction, and soft tissue pressures. There may be other more subtle factors as well.
Height of Epithelial Attachment
The height of normal gingival tissue . mesiallv and distallv on approximating teeth, is directly dependent upon the height of the epithelial attachment on these teeth. Normal attachment follows the curvature of the cementoenamel junction if the teeth are jn proper, alignment and contact.
Deciduous dentition period.
-The deciduous teeth start to erupt at the age of six months and the deciduous dentition is complete by the age of approximately two and one half years of age.
-The jaws continue to increase in size at all points until about age one year.
-After this, growth of the arches is lengthening of the arches at their posterior (distal) ends. Also, there is slightly more forward growth of the mandible than the maxilla.
1. Many early developmental events take place.
-The tooth buds anticipate the ultimate occlusal pattern.
-Mandibular teeth tend to erupt first. The pattern for the deciduous incisors is usually in this distinctive order:
(1) mandibular central
(2) maxillary central incisors
(3) then all four lateral incisors.
-By one year, the deciduous molars begin to erupt.
-The eruption pattern for the deciduous dentition as a whole is:
(1) central incisor
(2) lateral incisor
(3) deciduous first molar
(4) then the canine
(5) then finally the second molar.
-Eruption times can be variable.
2. Occlusal changes in the deciduous dentition.
-The overjet tends to diminish with age. Wear and mandibular growth are a factor in this process.
-The overbite often diminishes with the teeth being worn to a flat plane occlusion.
-Spacing of the incisors in anticipation of the soon-to-erupt permanent incisors appears late. Permanent anterior teeth (incisors and canines) are wider mesiodistally than deciduous anterior teeth. In contrast, the deciduous molar are wider mesiodistally that the premolars that later replace them.
-Primate spaces occur in about 50% of children. They appear in the deciduous dentition. The spaces appear between the upper lateral incisor and the upper canine. They also appear between the lower canine and the deciduous first molar.
CEMENTUM vs. BONE
Cementum simulates bone
1) Organic fibrous framework, ground substance, crystal type, development
2) Lacunae
3) Canaliculi
4) Cellular components
5) Incremental lines (also known as "resting" lines; they are produced by continuous but phasic, deposition of cementum)
Differences between cementum and bone
1) Cementum is not vascularized
2) Cementum has minor ability to remodel
3) Cementum is more resistant to resorption compared to bone
4) Cementum lacks neural component
5) Cementum contains a unique proteoglycan interfibrillar substance
6) 70% of bone is made by inorganic salts (cementum only 46%)
Relation of Cementum to Enamel at the Cementoenamel Junction (CEJ)
"OMG rule"
In 60% of the teeth cementum Overlaps enamel
In 30% of the teeth cementum just Meets enamel
In 10% of the teeth there is a small Gap between cementum and enamel
Permanent dentition period
-Maxillary / mandibular occlusal relationships are established when the last of the deciduous teeth are lost. The adult relationship of the first permanent molars is established at this time.
-Occlusal and proximal wear reduces crown height to the permanent dentition and the mesiodistal dimensions of the teeth
occlusal and proximal wear also changes the anatomy of teeth. As cusps are worn off, the occlusion can become virtually flat plane. -In the absence of rapid wear, overbite and overjet tend to remain stable.
-Mesio-distal jaw relationships tend to be stable,
With aging, the teeth change in color from off white to yellow. smoking and diet can accelerate staining or darkening of the teeth.
Gingival recession results in the incidence of more root caries . With gingival recession, some patients have sensitivity due to exposed dentin at the cemento-enamel junction.
Curve of Spee.
-The cusp tips and incisal edges align so that there is a smooth, linear curve when viewed from the lateral aspect. The mandibular curve of Spee is concave whereas the maxillary curve is convex.
-It was described by Von Spee as a 4" cylinder that engages the occlusal surfaces.
-It is called a compensating curve of the dental arch.
There is another: the Curve of Wilson. Clinically, it relates to the anterior overbite: the deeper the curve, the deeper the overbite.
Alveolar bone (process)
1. The bone in the jaws that contains the teeth alveoli (sockets).
2. Three types of bone :
a. Cribriform plate (alveolar bone proper)
(1) Directly lines and forms the tooth socket. It is compact bone that contains many holes, allowing for the passage of blood vessels. It has no periosteum.
(2) Serves as the attachment site for PDL (Sharpey’s) fibers.
(3) The tooth socket is constantly being remodeled in response to occlusal forces. The bone laid down on the cribriform plate, which also provides attachment for PDL fibers, is known as bundle bone.
(4) It is radiographically known as the lamina dura.
b. Cortical (compact) bone
(1) Lines the buccal and lingual surfaces of the mandible and maxilla.
(2) Is typical compact bone with a periosteum and contains Haversian systems.
(3) Is generally thinner in the maxilla and thicker in the mandible, especially around the buccal area of the mandibular premolar and molar.
c. Trabecular (cancellous, spongy) bone
(1) Is typical cancellous bone containing Haversian systems.
(2) Is absent in the maxillary anterior teeth region.
3. Alveolar crest (septa)
a. The height of the alveolar crest is usually 1.5 to 2 mm below the CEJ junction.
b. The width is determined by the shape of adjacent teeth.
(1) Narrow crests—found between teeth with relatively flat surfaces.
(2) Widened crests—found between teeth with convex surfaces or teeth spaced apart.