Talk to us?

Dental Anatomy - NEETMDS- courses
NEET MDS Lessons
Dental Anatomy

CEMENTUM vs. BONE

Cementum simulates bone
1) Organic fibrous framework, ground substance, crystal type, development
2) Lacunae
3) Canaliculi
4) Cellular components
5) Incremental lines (also known as "resting" lines; they are produced by continuous but phasic, deposition of cementum)

Differences between cementum and bone
1) Cementum is not vascularized
2) Cementum has minor ability to remodel
3) Cementum is more resistant to resorption compared to bone
4) Cementum lacks neural component
5) Cementum contains a unique proteoglycan interfibrillar substance
6) 70% of bone is made by inorganic salts (cementum only 46%)

Relation of Cementum to Enamel at the Cementoenamel Junction (CEJ)

"OMG rule"

In 60% of the teeth cementum Overlaps enamel
In 30% of the teeth cementum just Meets enamel
In 10% of the teeth there is a small Gap between cementum and enamel

AGE CHANGES

Progressive apical migration of the dentogingival junction.
Toothbrush abrasion of the area can expose dentin that can cause root caries and tooth mobility.

Histology of the alveolar bone

 

Near the end of the 2nd month of fetal life, mandible and maxilla form a groove that is opened toward the surface of the oral cavity.
As tooth germs start to develop, bony septa form gradually. The alveolar process starts developing strictly during tooth eruption.

The alveolar process is the bone that contains the sockets (alveoli) for the teeth and consists of

a) outer cortical plates
b) a central spongiosa and
c) bone lining the alveolus (bundle bone)

The alveolar crest is found 1.5-2.0 mm below the level of the CEJ.
If you draw a line connecting the CE junctions of adjacent teeth, this line should be parallel to the alveolar crest. If the line is not parallel, then there is high probability of periodontal disease.

Bundle Bone

The bundle bone provides attachment to the periodontal ligament fibers. It is perforated by many foramina that transmit nerves and vessels (cribiform plate). Embedded within the bone are the extrinsic fiber bundles of the PDL mineralized only at the periphery. Radiographically, the bundle bone is the lamina dura. The lining of the alveolus is fairly smooth in the young but rougher in the adults.

Clinical considerations

Resorption and regeneration of alveolar bone
This process can occur during orthodontic movement of teeth. Bone is resorbed on the side of pressure and opposed on the site of tension.

Osteoporosis
Osteoporosis of the alveolar process can be caused by inactivity of tooth that does not have an antagonist

Interarch relationship can be  viewed from a stationary (fixed) and a dynamic (movable ) perspective

1.Stationary Relationship

a) .Centric Relation is the most superior relationship of the condyle of the mandible to the articular fossa of the temporal bone as determined by the bones ligaments. and muscles of the temporomandibular joint; in an ideal dentition it is the same as centric occlusion

Centric occlusion is habitual occlusion where maximum intercuspation occurs

The characteristics of centric occlusion are

(1) Overjet: or that characteristic of maxillary teeth to overlap the mandibular teeth in a horizontal direction by 1 to 2 mm the maxilla arch is slightly larger; functions to protect the narrow edge of the incisors and provide for an intercusping relation of posterior teeth

(2) Overbite or that characteristic of maxillary anterior teeth to overlap the mandibular anterior teeth in a vertical direction by a third of the lower crown height facilitates scissor like function of incisors

(3) Intercuspation. or that characteristic of posterior teeth to intermesh in a faciolingual direction  The mandibular facial and maxillary lingual cusp  are centric cusps yhat contact interocclusally in the opposing arch

(4) Interdigitation, or that characteristic_of that tooth to  articulate with two opposing teeth (except for the mandibular central incisors and the maxillary last molars); a mandibular tooth occludes with the same tooth in the upper arch and the one mesial to it; a maxillary tooth occludes with the same tooth in the mandibular arch and the one distal to it.

2. Dynamic interarch relationshjps are result of functional mandibular movements that start and end with centric  occlusion during mastication

a. Mandibular movements are

(1) Depression (opening)

(2) Elevation (closing)

(3) Protrusion (thrust forward)

(4) Retrusion (bring back)

(5) Lateral movements right and left; one side is always the working side and one the balancing or nonworking side

b. Mandibular movements from centric occlusion are guided by the maxillary teeth

(1) Protrusion is guided by the incisors called incisal guidence

(2) Lateral movments are guided by the Canines on the working side in young, unworn dentitions (cuspid rise or cuspid protected occlusion); guided by incisors and posterior teeth in older worn. dentition (incisal/group guidance)

c. As mandibular movements commence from centric occlusion, posterior teeth should disengage in protrusion the posterior teeth on the balancing side should disengage in lateral movement

d. If tooth contact occurs where teeth should be disengaged, occlusal interference or premature contacts exist.

Crown stage

Hard tissues, including enamel and dentin, develop during the next stage of tooth development. This stage is called the crown, or maturation, stage by some researchers. Important cellular changes occur at this time. In prior stages, all of the inner enamel epithelium cells were dividing to increase the overall size of the tooth bud, but rapid dividing, called mitosis, stops during the crown stage at the location where the cusps of the teeth form. The first mineralized hard tissues form at this location. At the same time, the inner enamel epithelial cells change in shape from cuboidal to columnar. The nuclei of these cells move closer to the stratum intermedium and away from the dental papilla.

The adjacent layer of cells in the dental papilla suddenly increases in size and differentiates into odontoblasts, which are the cells that form dentin. Researchers believe that the odontoblasts would not form if it were not for the changes occurring in the inner enamel epithelium. As the changes to the inner enamel epithelium and the formation of odontoblasts continue from the tips of the cusps, the odontoblasts secrete a substance, an organic matrix, into their immediate surrounding. The organic matrix contains the material needed for dentin formation. As odontoblasts deposit organic matrix, they migrate toward the center of the dental papilla. Thus, unlike enamel, dentin starts forming in the surface closest to the outside of the tooth and proceeds inward. Cytoplasmic extensions are left behind as the odontoblasts move inward. The unique, tubular microscopic appearance of dentin is a result of the formation of dentin around these extensions.

After dentin formation begins, the cells of the inner enamel epithelium secrete an organic matrix against the dentin. This matrix immediately mineralizes and becomes the tooth's enamel. Outside the dentin are ameloblasts, which are cells that continue the process of enamel formation; therefore, enamel formation moves outwards, adding new material to the outer surface of the developing tooth.

Pulp

1. Four zones—listed from dentin inward

a. Odontoblastic layer

(1) Contains the cell bodies of odontoblasts.

 

Note: their processes remain in dentinal tubules.

 

(2) Capillaries, nerve fibers, and dendritic cells may also be present.

 

b. Cell-free or cell-poor zone (zone of Weil)

(1) Contains capillaries and unmyelinated nerve fibers.

 

c. Cell-rich zone

(1) Consists mainly of fibroblasts. Macrophages, lymphocytes, and dendritic cells may also be present.


d. The pulp (pulp proper, central zone)

(1) The central mass of the pulp.

(2) Consists of loose connective tissue, larger vessels, and nerves. Also contains fibroblasts and pulpal cells.


2. Pulpal innervation

a. When pulpal nerves are stimulated, they can only transmit one signal pain.

b. There are no proprioceptors in the pulp.

 

c. Types of nerves:

(1) A-delta fibers

(a) Myelinated sensory nerve fibers.

(b) Stimulation results in the sensation of fast, sharp pain.

(c) Found in the coronal (odontoblastic) area of the pulp.


(2) C-fibers

(a) Unmyelinated sensory nerve fibers.

(b) Transmits information of noxious stimuli centrally.

(c) Stimulation results in pain that is slower, duller, and more diffuse in nature.

(d) Found in the central region of the pulp.


(3) Sympathetic fibers

(a) Found deeper within the pulp.

(b) Sympathetic stimulation results in vasoconstriction of vessels.

Permanent dentition period  

-Maxillary / mandibular occlusal relationships are established when the last of the deciduous teeth are lost. The adult relationship of the first permanent molars is established at this time.

-Occlusal and proximal wear reduces crown height to the permanent dentition and the mesiodistal dimensions of the teeth

occlusal and proximal wear also changes the anatomy of teeth. As cusps are worn off, the occlusion can become virtually flat plane. -In the absence of rapid wear, overbite and overjet tend to remain stable.

-Mesio-distal jaw relationships tend to be stable,

With aging, the teeth change in color from off white to yellow. smoking and diet can accelerate staining or darkening of the teeth.

Gingival recession results in the incidence of more root caries . With gingival recession, some patients have sensitivity due to exposed dentin at the cemento-enamel junction.

Curve of Spee.

-The cusp tips and incisal edges align so that there is a smooth, linear curve when viewed from the lateral aspect. The mandibular curve of Spee is concave whereas the maxillary curve is convex.

-It was described by Von Spee as a 4" cylinder that engages the occlusal surfaces.

-It is called a compensating curve of the dental arch.

There is another: the Curve of Wilson. Clinically, it relates to the anterior overbite: the deeper the curve, the deeper the overbite.

Dental Formula, Dental Notation, Universal Numbering System

A. Dental Formula. The dental formula expresses the type and number of teeth per side

The Universal Numbering System. The rules are as follows:

1. Permanent teeth are designated by number, beginning with the last tooth on the upper right side, going on to the last tooth on the left side, then lower left to lower right

2. Deciduous teeth are designated by letter, beginning with the last tooth on the upper right side and proceeding in clockwise fashion

Explore by Exams