NEET MDS Lessons
General Pathology
Jaundice, or icterus
a. Characterized by yellowness of tissues, including skin, eyes, and mucous membranes.
b. Caused by excess conjugated and/or unconjugated serum bilirubin. (increased levels of bilirubin in the blood)
lcterus is visible when the serum bilirubin exceeds 2 mg/dl. In unconjugated hyperbilirubinemia, bilirubin is not excreted into the urine because of tight protein binding in serum. In conjugated hyperbilirubinemia, small amounts of bilirubin are excreted in the urine because
it is less tightly protein bound.
NOTE: Concentration of bilirubin in blood plasma does not normally exceed 1 mg/dL (>17µmol/L). A concentration higher than 1.8 mg/dL (>30µmol/L) leads to jaundice.
The conjunctiva of the eye are one of the first tissues to change color as bilirubin levels rise in jaundice. This is sometimes referred to as scleral icterus.
c. Types and causes include:
(1) Hepatocellular jaundice—caused by liver diseases such as cirrhosis and hepatitis.
(2) Hemolytic jaundice—caused by hemolytic anemias.
(3) Obstructive jaundice—caused by blockage of the common bile duct either by gallstones (cholelithiasis) or carcinomas involving the head of
the pancreas.
Differential diagnosis
Jaundice is classified into three categories, depending on which part of the physiological mechanism the pathology affects. The three categories are:
Pre-hepatic → The pathology is occurring prior to the liver.
Hepatic → The pathology is located within the liver.
Post-Hepatic → The pathology is located after the conjugation of bilirubin in the liver.
Pre-hepatic
Pre-hepatic jaundice is caused by anything which causes an increased rate of hemolysis (breakdown of red blood cells).
Certain genetic diseases, such as sickle cell anemia, spherocytosis, thalassemia and glucose 6-phosphate dehydrogenase deficiency can lead to increased red cell lysis and therefore hemolytic jaundice.
Commonly, diseases of the kidney, such as hemolytic uremic syndrome, can also lead to coloration. Defects in bilirubin metabolism also
present as jaundice, as in Gilbert's syndrome (a genetic disorder of bilirubin metabolism which can result in mild jaundice, which is found in about 5% of the population) and Crigler-Najjar syndrome.
In jaundice secondary to hemolysis, the increased production of bilirubin, leads to the increased production of urine-urobilinogen. Bilirubin is not usually found in the urine because unconjugated bilirubin is not water-soluble, so, the combination of increased urine-urobilinogen with no bilirubin (since, unconjugated) in urine is suggestive of hemolytic jaundice.
Laboratory findings include:
• Urine: no bilirubin present, urobilinogen > 2 units (i.e., hemolytic anemia causes increased heme metabolism; exception: infants where gut flora has not developed).
• Serum: increased unconjugated bilirubin.
• Kernicterus is associated with increased unconjugated bilirubin.
Hepatocellular
Hepatocellular (hepatic) jaundice can be caused by acute or chronic hepatitis, hepatotoxicity, cirrhosis, drug induced hepatitis and alcoholic liver disease. Cell necrosis reduces the liver's ability to metabolize and excrete bilirubin leading to a buildup of unconjugated bilirubin in the blood.
Laboratory findings depend on the cause of jaundice.
• Urine: Conjugated bilirubin present, urobilirubin > 2 units but variable (except in children). Kernicterus is a condition not associated with increased conjugated bilirubin.
• Plasma protein show characteristic changes.
• Plasma albumin level is low but plasma globulins are raised due to an increased formation of antibodies.
Bilirubin transport across the hepatocyte may be impaired at any point between the uptake of unconjugated bilirubin into the cell and transport of conjugated bilirubin into biliary canaliculi.
Post-hepatic
Post-hepatic jaundice, also called obstructive jaundice, is caused by an interruption to the drainage of bile in the biliary system. The most common causes are gallstones in the common bile duct, and pancreatic cancer in the head of the pancreas. Also, a group of parasites known as "liver flukes" can live in the common bile duct, causing obstructive jaundice. Other causes include strictures of the common bile duct, biliary atresia, cholangiocarcinoma, pancreatitis and pancreatic pseudocysts. A rare cause of obstructive jaundice is Mirizzi's syndrome.
Pathophysiology
When RBCs are damaged, their membranes become fragile and prone to rupture. As each RBC traverses through the reticuloendothelial system, its cell membrane ruptures when its membrane is fragile enough to allow this.
Hemoglobin, are released into the blood. The hemoglobin is phagocytosed by macrophages, and split into its heme and globin portions. The globin portion, a protein, is degraded into amino acids and plays no role in jaundice.
Two reactions then take place with the heme molecule.
The first oxidation reaction is catalyzed by the microsomal enzyme heme oxygenase and results in biliverdin (green color pigment), iron
and carbon monoxide.
The next step is the reduction of biliverdin to a yellow color tetrapyrol pigment called bilirubin by cytosolic enzyme biliverdin reductase.
This bilirubin is "unconjugated," "free" or "indirect" bilirubin. Approximately 4 mg of bilirubin per kg of blood is produced each day.[11] The majority of this bilirubin comes from the breakdown of heme from expired red blood cells in the process just described.
However approximately 20 percent comes from other heme sources, including ineffective erythropoiesis, and the breakdown of other heme-containing proteins, such as muscle myoglobin and cytochromes.
Hepatic events
The unconjugated bilirubin then travels to the liver through the bloodstream. Because bilirubin is not soluble, however, it is transported through the blood bound to serum albumin.
In Liver, it is conjugated with glucuronic acid (to form bilirubin diglucuronide, or just "conjugated bilirubin") to become more water soluble.
The reaction is catalyzed by the enzyme UDP-glucuronyl transferase.
This conjugated bilirubin is excreted from the liver into the biliary and cystic ducts as part of bile. Intestinal bacteria convert the bilirubin into urobilinogen.
Urobilinogen can take two pathways. It can either be further converted into stercobilinogen, which is then oxidized to stercobilin and passed out in the feces, or it can be reabsorbed by the intestinal cells, transported in the blood to the kidneys, and passed out in the urine as the oxidised product urobilin.
Stercobilin and urobilin are the products responsible for the coloration of feces and urine, respectively.
Biochemical examination
This is a method by which the metabolic disturbances of disease are investigated by assay of various normal and abnormal compounds in the blood, urine, etc.
Psoriasis is a chronic disorder characterized by scaly, erythematous plaques, which histologically are secondary to epidermal proliferation.
- genetic factors (HLA relationships), environmental (physical injury, infection, drugs, photosensitivity), abnormal cellular proliferation (deregulation of epidermal proliferation) and microcirculatory changes in the papillary dermis (diapedesis of neutrophils into the epidermis) are all interrelated.
- the plaques of psoriasis are characteristically well-demarcated pink or salmon colored lesions covered by a loosely-adherent silver-white scale which, when picked off, reveals pinpoint bleeding sites (Auspitz sign).
- the nail changes in psoriasis include pitting, dimpling, thickening and crumbling with a yellowish-brown discoloration of the nail plate.
- the characteristic histologic features of psoriasis include:
- hyperkeratosis
- absence of the granulosa cells (present in lichen planus).
- parakeratosis
- regular, club-shaped elongation of the rete pegs (irregular and saw toothed in lichen planus) with vessel proliferation in the papillary dermis (reason for the bleeding associated with Auspitz sign).
- characteristic subcorneal collection of neutrophils called a Munro's microabscess (diapedesis from vessels in papillary dermi).
- 7% develop HLA B27 positive psoriatic arthritis
Urinary tract infection
Most often caused by gram-negative, rod-shaped bacteria that are normal residents of the enteric tract, especially Escherichia coli.
Clinical manifestations:
frequent urination, dysuria, pyuria (increased PMNs), hematuria, and bacteriuria.
May lead to infection of the urinary bladder (cystitis) or kidney (pyelonephritis).
Varicose Veins
- are abnormally dilated, tortuous veins produced by prolonged increase in intraluminal pressure and loss of vessel wall support.
- The superficial veins of the leg are typically involved
-venous pressures in these sites can be markedly elevated -> venous stasis and pedal edema (simple orthostatic edema)
-Some 10% to 20% of adult males and 25% to 33% of adult females develop lower extremity varicose veins
RISK FACTORS
-> obesity
-> Female gender
-> pregnancy.
-> familial tendency (premature varicosities results from imperfect venous wall development)
Morphology
- wall thinning
- intimal fibrosis in adjacent segments
- spotty medial calcifications (phlebosclerosis)
- Focal intraluminal thrombosis
- venous valve deformities (rolling and shortening)
COMPLICATIONS
- stasis, congestion, edema, pain, and thrombosis
- chronic varicose ulcers
- embolism is very rare.
SMALL INTESTINE
Congenital anomalies
1. Meckel's diverticulum (a true diverticulum) is due to persistence of the omphalomesenteric vitelline duct.
2. Atresia is a congenital absence of a region of bowel, leaving a blind pouch or solid fibrous cord.
3. Stenosis refers to a narrowing of any region of the gastrointestinal tract, which may cause obstruction.
4. Duodenal diverticula are areas of congenital weakness permitting saccular enlargement. The duodenum is the most common region of the small bowel to contain diverticula.
5. Diverticula of jejunum and ileum are herniations of mucosa and submucosa at points where the mesenteric vessels and nerves enter.
Infections
1. Bacterial enterocolitis may be caused by the ingestion of preformed bacterial toxins, producing symptoms ranging from severe but transient nausea, vomiting, and diarrhea (Staphylococcus aureus toxin) to lethal paralysis (Clostridium botulinum toxin). Ingestion of toxigenic bacteria with colonization of the gut (e.g., Vibrio cholera, toxigenic E. coli, various species of Campylobacter jejuni, Shigella, salmonel
Yersinia, and many others) is another potential cause.
2. Nonbacterial gastroenterocolitis
a. Viral
(1) Rotavirus (children)
(2) Parvovirus (adults)
b. Fungal-Candida
c. Parasitic
(1 ) Entamoeba histolytica
(2) Giardia lamblia
3. In HIV patients. Causes of infectious diarrhea in HIV patients include Cryptosporidium, Microsporidia, isospora belli, CMV, and M. avium-intracellulare.
C. Malabsorption is defined as impaired intestinal absorption of dietary constituents.
Clinical features include diarrhea,steatorrhea, weakness, lassitude, and weight loss. Steatorrhea results in deficiency of fat-soluble vitamins (A, D, E, K) and calcium.
1. Celiac sprue
a. Etiology. Celiac sprue (nontropical sprue or gluten enteropathy) is caused by an allergic, immunologic, or toxic reaction to the gliadin component of gluten. There is a genetic predisposition.
Symptoms:
– Steatorrhea, abdominal distention, flatulence, fatigue, and weight loss
Complications:
– Iron and vitamin deficiency
– Risk of lymphoma (T-cell type)
Extraintestinal manifestation:
– Dermatitis herpetiformis (a pruritic papulovesicular rash with IgA deposits at the dermoepidermal junction)
2. Tropical sprue
Etiology. Tropical sprue is of unknown etiology, but may be caused by enterotoxigenic E. coli.
3. Disaccharidase deficiency is due to a deficiency of brush border enzymes. Lactase deficiency is most common.
4. Diverticulosis Coli
- Acquired colonic diverticula are present in nearly half of the population over the age of 50
- Diverticula are associated with low-fiber, low-residue diets
- Etiology is most likely high intraluminal pressure required for propulsion of hard, small stools
- Complications include hemorrhage, acute diverticulitis, perforation, fistula formation
Obstructive lesions
Hernias cause 15% of small intestinal obstruction. They are due to a protrusion of a serosa-lined sac through a weakness in the wall of the peritoneal cavity. They occur most commonly at the inguinal and femoral canals, at the umbilicus, and with scars. They may lead to entrapment, incarceration, and strangulation of the bowel.
Tumors of the small bowel account for only 5% of gastrointestinal tumors.
Benign tumors in descending order of frequency include:
leiomyomas, lipomas, adenomas (polyps), angiomas, and fibromas. Adenomatous polyps are most common in the stomach and duodenum and may be single or multiple, sessile or pedunculated. The larger the polyp, the greater the incidence of malignant transformation.
Malignant tumors, in descending order of frequency, include: endocrine cell tumors, lymphomas, adenocarcinomas, and leiomyosarcomas.
Idiopathic Inflammatory Bowel Disease (IBD)
- Chronic, relapsing, idiopathic inflamamtory disease of the GI tract
Crohn’s Disease
– Transmural granulomatous disease affecting any portion of the GI tract
Ulcerative Colitis
– Superficial, non-granulomatous inflammatory disease restricted to the colon
Ulcerative Colitis
- Bloody mucoid diarrhea, rarely toxic megacolon
- Can begin at any age, peaks at 20-25 years
- Annual incidence of ~10 per 100,000 in US
- Negligible risk of cancer in the first 10 years, but 1% per year risk of cancer thereafter
- Good response to total colectomy if medical therapy fails
Macroscopic
- Normal serosa
- Bowel normal thickness
- Continuous disease
- Confluent mucosal ulceration
- Pseudopolyp formation
Microscopic
- Crypt distortion + shortening
- Paneth cell metaplasia
- Diffuse mucosal inflammation
- Crypt abscesses
- Mucin depletion
- Mucosal ulceration
Crohn’s Disease
- Variable and elusive clinical presentation with diarrhea, pain, weight loss, anorexia, fever
- Can begin at any age, peaks at 15-25 years
- Annual incidence of ~3 per 100,000 in US
- Many GI complications and extracolonic manifestations
- Risk of cancer less than in UC
- Poor response to surgery
Macroscopic
Fat wrapping
Thickened bowel wall
Skip Lesions
Stricture formation
Cobblestoned mucosa
Ulceration
Microscopic
- Cryptitis and crypt abscesses
- Transmural inflammation
- Lymphoid aggregates +/- granulomas
- “Crohn’s rosary”
- Fissuring
- Neuromuscular hyperplasia
Hyperparathyroidism
Abnormally high levels of parathyroid hormone (PTH) cause hypercalcemia. This can result from either primary or secondary causes. Primary hyperparathyroidism is caused usually by a parathyroid adenoma, which is associated with autonomous PTH secretion. Secondary hyperparathyroidism, on the other hand, can occur in the setting of chronic renal failure. In either situation, the presence of excessive amounts of this hormone leads to significant skeletal changes related to a persistently exuberant osteoclast activity that is associated with increased bone resorption and calcium mobilization. The entire skeleton is affected. PTH is directly responsible for the bone changes seen in primary hyperparathyroidism, but in secondary hyperparathyroidism additional influences also contribute. In chronic renal failure there is inadequate 1,25- (OH)2-D synthesis that ultimately affects gastrointestinal calcium absorption. The hyperphosphatemia of renal
failure also suppresses renal α1-hydroxylase, which further impair vitamin D synthesis; all these eventuate in hypocalcemia, which stimulates excessive secretion of PTH by the parathyroid glands, & hence elevation in PTH serum levels.
Gross features
• There is increased osteoclastic activity, with bone resorption. Cortical and trabecular bone are lost and replaced by loose connective tissue.
• Bone resorption is especially pronounced in the subperiosteal regions and produces characteristic radiographic changes, best seen along the radial aspect of the middle phalanges of the second and third fingers.
Microscopical features
• There is increased numbers of osteoclasts and accompanying erosion of bone surfaces.
• The marrow space contains increased amounts of loose fibrovascular tissue.
• Hemosiderin deposits are present, reflecting episodes of hemorrhage resulting from microfractures of the weakened bone.
• In some instances, collections of osteoclasts, reactive giant cells, and hemorrhagic debris form a distinct mass, termed "brown tumor of hyperparathyroidism". Cystic change is common in such lesions (hence the name osteitis fibrosa cystica). Patients with hyperparathyroidism have reduced bone mass, and hence are increasingly susceptible to fractures and bone deformities.