Talk to us?

- NEETMDS- courses
NEET MDS Lessons
General Pathology

Clinical genetics (cytogenetics),

This is a method in which inherited chromosomal abnormalities in the germ cells or acquired chromosomal abnormalities in somatic cells are investigated using the techniques of molecular biology.

INFLAMMATION

Response of living tissue to injury, involving neural, vascular and cellular response.

ACUTE INFLAMMATION

It involves the formation of a protein .rich and cellullar exudate and the cardinal signs are calor, dolor, tumour, rubor and function loss

 

The basic components of the response are

Haemodynamic changes.

Permeability changes

Leucocyte events.

1. Haemodynamic Changes :

  • Transient vasoconstriction followed by dilatation.
  • Increased blood flow in arterioles.
  • More open capillary bed.
  • Venous engorgement and congestion.
  • Packing of microvasculature by RBC (due to fluid out-pouring)
  • Vascular stasis.
  • Change in axial flow (resulting in margination of leucocytes)

.2. Permeability Changes:

Causes.

  • Increased intravascular hydrostatic pressure.
  • Breakdown of tissue proteins into small molecules resulting in
  • increased tissue osmotic pressure.
  • Increased permeability due to chemical mediators, causing an
  • immediate transient response. .
  • Sustained response due to direct damage to microcirculation.

3. White Cell Events:

.Margination - due to vascular stasis and change in axial flow.

Pavementing - due to endothelial cells swollen and more sticky.

Leucocytes more adhesive.

Binding by a plasma component

Emigration - of leucocytes by amoeboid movement between endhothe1ial cells and beyond the basement membrane. The passive movement of RBCs through the gaps created during emigration is called diapedesis

Chemotaxis - This is a directional movement, especially of polymorphs and monocytes towards a concentration gradient resulting in aggregation of these cells at the site of inflammation. .Chemotactic agents may be:

  • Complement components. (C3and C5  fragments and C567)
  • Bacterial products.
  • Immune complexes, especially for monocyte.
  • Lymphocytic factor, especially for monocyte.

 Phagocytosis - This includes recognition, engulfment and intracellular degradation. It is aided by .Opsonins., Specific antibodies., Surface provided by fibrin meshwork.

Functions of the fluid and cellular exudate

1. Dilution of toxic agent.

2. Delivers serum factors like antibodies and complement components to site of inflammation.

3. Fibrin formed aids In :

  • Limiting inflammation
  • Surface phagocytosis
  • Framework for repair.

4. Cells of the exudate:

Phagocytose and destroy the foreign agent.

Release lytic enzymes when destroyed, resulting in extracellular killing of organisms- and digestion of debris to enable healing to occur

 

INFARCTION

 An infarct is an area of ischemic necrosis caused by occlusion of either the arterial supply or the venous drainage in a particular tissue 

 Nearly 99% of all infarcts result from thrombotic or embolic events 
 
other mechanisms include: local vasospasm, expansion of an atheroma, extrinsic compression of a vessel (e.g., by tumor); vessel twisting (e.g., in testicular torsion or bowel volvulus; and traumatic vessel rupture

MORPHOLOGY OF INFARCTS 

 infarcts may be either red (hemorrhagic) or white (anemic) and may be either septic or aseptic 

 All infarcts tend to be wedge-shaped, with the occluded vessel at the apex and the periphery of the organ forming the base 
 
 The margins of both types of infarcts tend to become better defined with time 
 
 The dominant histological characteristic of infarction is ischemic coagulative necrosis 
 
 most infarcts are ultimately replaced by scar. The brain is an exception, it results in liquefactive necrosis 
 
 RED INFARCTS:
occur in 
(1) venous occlusions (such as in ovarian torsion) 
(2) loose tissues (like lung) that allow blood to collect in the infarcted zone 
(3) tissues with dual circulations (lung and small intestine) 
(4) previously congested tissues because of sluggish venous outflow 
(5) when flow is re-established to a site of previous arterial occlusion and necrosis 

WHITE INFARCTS 

occur with: 
1) arterial occlusions 
2) solid organs (such as heart, spleen, and kidney).

Septic infarctions - occur when bacterial vegetations from a heart valve embolize or when microbes seed an area of necrotic tissue. - the infarct is converted into an abscess, with a correspondingly greater inflammatory response


FACTORS THAT INFLUENCE DEVELOPMENT OF AN INFARCT
- nature of the vascular supply 
- rate of development of the occlusion (collateral circulation ) 
- vulnerability to hypoxia - Neurons undergo irreversible damage 
- 3 to 4 minutes of ischemia. - Myocardial cells die after only 20 to 30 minutes of ischemia 
- the oxygen content of blood
 

Clinical & biologic death

Clinical death

Clinical death is the reversible transmission between life and biologic death. Clinical death is defined as the period of respiratory, circulatory and brain arrest during which initiation of resuscitation can lead to recovery.

Signs indicating clinical death are

• The patient is without pulse or blood pressure and is completely unresponsive to the most painful stimulus.

• The pupils are widely dilated

• Some reflex reactions to external stimulation are preserved. For example, during intubations, respiration may be restored in response to stimulation of the receptors of the superior laryngeal nerve, the nucleus of which is located in the medulla oblongata near the respiratory center.

• Recovery can occur with resuscitation. 

Biological Death

Biological death (sure sign of death), which sets in after clinical death, is an irreversible state

of cellular destruction. It manifests with irreversible cessation of circulatory and respiratory

functions, or irreversible cessation of all functions of the entire brain, including brain stem.

PERTUSSIS (Whooping Cough)

An acute, highly communicable bacterial disease caused by Bordetella pertussis and characterized by a paroxysmal or spasmodic cough that usually ends in a prolonged, high-pitched, crowing inspiration (the whoop).

Transmission is by aspiration of B. pertussis

Symptoms and Signs

The incubation period averages 7 to 14 days (maximum, 3 wk). B. pertussis invades the mucosa of the nasopharynx, trachea, bronchi, and bronchioles, increasing the secretion of mucus, which is initially thin and later viscid and tenacious. The uncomplicated disease lasts about 6 to 10 wk and consists of three stages: catarrhal, paroxysmal, and convalescent.

Neutropenia: Neutropenia is an abnormally low number of neutrophils  
Causes

-Typhoid, paratyphoid. .
-Viral and ricketseal infections.
-Malaria, Kala azar.
-Hypersplenism.
-Aplastic and megaloblastic anaemia.
-Marrow infiltration by malignancies, lymphomas etc.
-SLE.

Multiple myeloma.

Blood picture:

- Marked rouleaux formation.
- Normpcytic normochromic anaemia.
- There may be leucopenia or leucoery!hrohlastic reaction.
- Atypical plasma cells may be seen in some patients
- Raised ESR
- Monoclonal hypergammaglobulinaemia 
- If light chains are produced in excess, they are excreted in urine as bence jones protein

Bone marrow

- Hyper cellular
- Plasma cells from at least 15 – 30% atypical forms and myeloma cells are seen.
 

Explore by Exams