Talk to us?

- NEETMDS- courses
NEET MDS Lessons
General Pathology

Staphylococcal Infection

Staphylococci, including pathogenic strains, are normal inhabitants of the nose and skin of most healthy people
Virulence factors include coagulase (which clots blood), hemolysin, and protein A (which ties up Fc portions of antibodies). Although we have antibodies against staphylococci, they are of limited usefulness. 

Staphylococci (and certain other microbes) also produce catalase, which breaks down H2O2, rendering phagocytes relatively helpless against them. 

The coagulase-positive staphylococcus (Staphylococcus pyogenes var. aureus) is a potent pathogen. It tends to produce localized infection
It is the chief cause of bacterial skin abscesses. Infection spreads from a single infected hair (folliculitis) or splinter to involve the surrounding skin and subcutaneous tissues

Furuncles are single pimples
carbuncles are pimple clusters linked by tracks of tissue necrosis which involve the fascia.

Impetigo is a pediatric infection limited to the stratum corneum of the skin -- look for honey-colored crusts

Staphylococcal infections of the nail-bed (paronychia) and palmar fingertips (felons) are especially painful and destructive

These staph are common causes of wound infections (including surgical wounds) and of a severe, necrotizing pneumonia. Both are serious infections in the hospitalized patient.

Staph is the most common cause of synthetic vascular graft infections. Certain sticky strains grow as a biofilm on the grafts

Staph aureus is pathogenic, β-hemolytic, and makes coagulase.
Staph epidermidis are non-pathogenic strains that don’t make coagulase.  Often Antibiotics resistant, and     can become opportunistic infections in hospitals.

Staph aureus is normal flora in the nose and on skin, but can also colonize moist areas such as perineum.  Causes the minor infections after cuts.  Major infections occur with lacerations or immune compromise, where large number of cocci are introduced.

While Staph aureus can invade the gut directly (invasive staphylococcal enterocolitis), it is much more common to encounter food poisoning due to strains which have produced enterotoxin B, a pre-formed toxin in un-refrigerated meat or milk products

Staph epidermidis (Coagulase-negative staphylococci)
Universal normal flora but few virulence factors.  Often antibiotic resistant.
Major cause of foreign body infections such as prosthetic valve endocarditis and IV line sepsis.

Staph saprophyticus
Common cause of UTI in women.

Pathogenicity
Dominant features of S. aureus infections are pus, necrosis, scarring.  The infections are patchy.  Serious disease is rare because we are generally immune.  However, foreign bodies or necrotic tissue can start an infection.  Staph infections include wound infections, foreign body sepsis, pneumonia, meningitis.
Occassionally, S. aureus can persist within cells.

Major disease presentations include:
    --Endocarditis
    --Abscesses (due to coagulase activity)
    --Toxic Shock
    --Wound infections
    --Nosocomial pneumonia

Prevention of Staph aureus infections
S. aureus only lives on people, so touching is the main mode of transmission.  Infected patients     should be isolated, but containment is easy with intense hand washing.
 

Muscle pathology
1. Myasthenia gravis
a. An autoimmune disease caused by autoantibodies to acetylcholine receptors at the neuromuscular junctions.
b. Characterized by muscle weakness or the inability to maintain long durations of muscle contractions; this worsens during exercise but recovers after rest.
c. Affects various muscle groups, including:
(1) Eyes—diplopia, ptosis.
(2) Neck—dysphagia, problems swallowing or speaking.
(3) Extremities—arms and legs.
d. Treatment: cholinesterase inhibitors(neostigmine), anti-immune therapy.

2. Muscle tumors
a. Rhabdomyoma—benign tumor of skeletal muscle.
b. Leiomyoma
(1) Benign tumor of smooth muscle.
(2) Most common tumor found in women.
(3) Usually affects the uterus, although it can occur anywhere.
c. Rhabdomyosarcoma
(1) Malignant tumor of skeletal muscle.
(2) Most common sarcoma found in children.
(3) Usually affects head and neck region—orbit, nasal cavity, and nasopharynx.

Glycogen storage diseases (glycogenoses)

1. Genetic transmission: autosomal recessive.

2. This group of diseases is characterized by a deficiency of a particular enzyme involved in either glycogen production or degradative pathways.

Diseases include:
on Gierke disease (type I)
(a) Deficient enzyme: glucose-6-phosphatase.
(b) Major organ affected by the buildup of glycogen: liver.

Pompe disease (type II)

(1) Deficient enzyme: α-glucosidase(acid maltase).
(2) Major organ affected by the buildup of glycogen: heart.

Cori disease (type III)
(1) Deficient enzyme: debranching enzyme (amylo-1,6-glucosidase).
(2) Organs affected by the buildup of glycogen: varies between the heart, liver, or skeletal muscle.

Brancher glycogenosis (type IV)
(1) Deficient enzyme: branching enzyme.
(2) Organs affected by the buildup of glycogen: liver, heart, skeletal muscle, and brain.

McArdle syndrome (type V)
(1) Deficient enzyme: muscle phosphorylase.
(2) Major organ affected by the buildup of glycogen: skeletal muscle.

Nephrotic Syndrome
The patient will present with a triad of symptoms:
- Proteinuria, i.e. >3g/24hr-3.5g/24 hr
- Hypoalbuminaemia, i.e. <30g/L
- Oedema 
 >80% of cases are due to glomerulonephritis. In this syndrome, there is damage to podocytes 
 
 Clinical signs
- Pitting oedema, particularly in the limbs and around the eyes; may also cause genital oedema and ascites.
- Possible hypertension 

Causes
- Primary causes – these are diagnoses of exclusion that are only made if secondary causes cannot be found
    o Minimal change disease (MCD)
    o Focal segmental glomerulosclerosis
    o Membranous nephropathy
- Secondary causes – note that these fall into the same three categories as above:
    o Minimal change disease – Hep B, SLE, diabetes M, sarcoidosis, syphilis, malignancy
    o Focal segmental glomerulosclerosis –HIV, obesity, diabetes M, hypertensive nephrosclerosis
    o Minimal change disease –drugs, malignancy, particularly Hodgkin’s lymphoma  
    
 - Differential diagnoses include cardiac failure, i.e. increased JVP, pulmonary oedema and mild proteinuria, and liver disease, i.e. reduced serum albumin.
- The condition causes an increased susceptibility to infection – partly due to loss of immunoglobulin in the urine. Patients tend to be prone to streptococcus infection, as well as bacterial peritonitis and cellulitis.
- Nephrotic syndrome also increases the risk of thromboembolism and hyperlipidaemia.
- The former is due to an increase in the synthesis of clotting factors and to platelet abnormalities, and the latter is a result of increased synthesis of these by the liver to counteract reduced oncotic pressure.  

Investigations

- These are the same as those carried out in GN.
- Also, check for cholesterol as part of confirming the presence of hyperlipidemia.
- Renal biopsy – order this for all adults. In children, because the main cause is minimal change GN, steroids are the first-line treatment. Therefore, in children, biopsy is necessary only if pharmaceutical intervention fails to improve the situation.
- The hypercoagulant state seen in the nephrotic syndrome can be a risk factor for renal vein thrombosis. This can present as loin pain, haematuria, palpable kidney and sudden deterioration in kidney function. This should be investigated with Doppler USS, MRI or even renal angiography.
- Once diagnosed, give warfarin for 3 to 6 months.

Management

- Generally, this involves treatment of the underlying condition which is usually GN. Therefore, fluid management and salt intake restriction are priorities. The patient is usually given furosemide along with an ACE inhibitor and/or an angiotensin II receptor antagonist. Prophylactic heparin is given if the patient is immobile. Hyperlipidaemia can be treated with a statin. 

Nephritic Syndrome 

Acute and chronic
forms of the syndrome exist. The main difference between this and nephrotic syndrome is that in nephritic syndrome haematuria is present. There is also proteinuria, hypertension, uraemia, and possibly oliguria. The two standout features are hypertension and RBC casts. The urine will often appear ‘smoky’ in colour due to the presence of RBC casts. Very rarely, it may appear red 

Causes

1. Post-streptococcal
2. Primary:
- Membranous glomerulonephritis
- Rapidly progressive glomerulonephritis
- IgA nephropathy (Berger’s disease)
3. Secondary
- HSP
- Vasculitis

Clinical Features

- Abrupt onset of :
    o Glomerular haematuria (RBC casts or dysmorphic RBC)
    o Non-nephrotic range proteinuria (< 2 g in 24 hrs)
    o Oedema (periorbital, sacral )
    o Hypertension
    o Transient renal impairment (oliguria, uraemia)
- Urinary casts – these are cylindrical structures produced by the kidney and present in the urine in certain renal diseases. They form in the DCT and collecting duct, dislodging and passing in the urine where they are detected by microscopy. RBC casts are usually associated with nephritic syndrome. The presence of RBCs within a cast is always pathologic and strongly indicative of glomerular damage.
- The proteinuria present is often smaller than in nephrotic syndrome, thus a coexistent condition of nephrotic syndrome is not usually present.
- Encepelopathy may be present, particularly in children, due to electrolyte imbalances and hypertension. This type of presentation is indicative of glomerular damage, but requires renal biopsy to determine the exact problem. In this respect it is similar to nephrotic syndrome.
Overlapping of the two syndromes is possible as nephrotic syndrome may precede nephritic syndrome, although not vice-versa.

Mechanisms of the syndrome vary according to cause; both primary and secondary causes exist. Post-infectious GN is the classic illustration of nephritic syndrome, but the condition may be caused by other glomerulopathies and by systemic diseases such as connective tissue disorders 

Two clinical terms to remember:
- Nephritic syndrome; which comprises edema, proteinuria, hypoalbuminemia, hematuria (smoky urine), oligurua and hypertension.
- Nephrotic syndrome; which comprises of albuminuria, hypoalbuminemia, edema, hyperlipidemia, lipiduria. 

Immunoglobulins. (Ig)

 These are made up of polypeptide chains. Each molecule is constituted by two heavy and two light chains, linked by disulfide (S-S) bonds. The h~ chains are of 5 types, with corresponding, types or  immunoglobulin. IgG (gamma), IgM (mu µ ), IgA(alpha α), IgD(delta ), IgE(epsilon)

Each of these can have light chains of either kappa (k) or lambda type.Each chain has a constant portion (constant for the subtype) land a variable portion (antigen specific).

Enzyme digestion can split the Ig molecule into.2 Fab (antibody binding) fragments and one Fc (crystallisable, complement binding ) fragment.

Characteristics of Immunoglobulin subclasses

I. Ig G:

(i) Predominant portion (80%) of Ig.

(ii) Molecular weight 150, 000

(iii) Sedimentation coefficient of 7S.

(iv) Crosses placental barrier and to extra cellular fluid.

  • (v) Mostly neutralising effect. May be complement fixing.

(vi) Half life of 23 days.

2.IgM :

(i) Pentamer of Ig.

(ii) Molecular weight 900, 000

(iii) 19S.

(iv) More effective complement fixation and cells lysis

(v) Earliest to be produced in infections.

(vi) Does not cross placental barrier.

(vii) Halflife of 5 days.

3. Ig A :

  • Secretory  antibody. Found in intestinal, respiratory secretions tears, saliva and urine also.
  • Secreted  usually as a dinner with secretory piece.
  • Mol. weight variable (160,000+)
  • 7 S to 14 S.
  • Half life of 6 days.

4.Ig D :

  • Found in traces.
  • 7 S.
  • Does not cross placenta.

5. Ig E

  • Normally not traceable
  • 7-8 S (MoL weight 200,000)
  • Cytophilic antibody, responsible for some hypersensitivity states,

 LUNG ABSCESS  Lung abscess is a localised area of necrosis of lung tissue with suppuration.

 It is of 2 types:

 - Primary lung abscess that develops in an otherwise normal lung. The commonest cause is aspiration of infected material.

 - Secondary lung abscess that develops as a complication of some other disease of the lung or from another site

ETIOPATHOGENESIS.

 The microorganisms commonly isolated from the lungs in lung abscess are streptococci, staphylococci and various gram-negative organisms. These are introduced into the lungs from one of the following mechanisms:

 1.   Aspiration of infected foreign material.

 2. Preceding bacterial infection.

 3.  Bronchial obstruction.

 4. Septic embolism.

 5. Miscellaneous (i) Infection in pulmonary infarcts, (ii) Amoebic abscesses, (iii) Trauma to the lungs. (iv) Direct extension from a suppurative focus.

Abscesses may be of variable size from a few millimeters to large cavities, 5 to 6 cm in diameter. The cavity often contains exudate. An acute lung abscess is initially surrounded by acute pneumonia and has poorly-defined ragged wall. With passage of time, the abscess becomes chronic and develops fibrous wall.

Microscopic Examination

The characteristic feature is the destruction of lung parenchyma with suppurative exudate in the lung cavity. The cavity is initially surrounded by acute inflammation in the wall but later there is replacement by exudate of lymphocytes, plasma cells and macrophages. In more chronic cases, there is considerable fibroblastic proliferation forming a fibrocollagenic wall.

INFLAMMATION

Response of living tissue to injury, involving neural, vascular and cellular response.

ACUTE INFLAMMATION

It involves the formation of a protein .rich and cellullar exudate and the cardinal signs are calor, dolor, tumour, rubor and function loss

 

The basic components of the response are

Haemodynamic changes.

Permeability changes

Leucocyte events.

1. Haemodynamic Changes :

  • Transient vasoconstriction followed by dilatation.
  • Increased blood flow in arterioles.
  • More open capillary bed.
  • Venous engorgement and congestion.
  • Packing of microvasculature by RBC (due to fluid out-pouring)
  • Vascular stasis.
  • Change in axial flow (resulting in margination of leucocytes)

.2. Permeability Changes:

Causes.

  • Increased intravascular hydrostatic pressure.
  • Breakdown of tissue proteins into small molecules resulting in
  • increased tissue osmotic pressure.
  • Increased permeability due to chemical mediators, causing an
  • immediate transient response. .
  • Sustained response due to direct damage to microcirculation.

3. White Cell Events:

.Margination - due to vascular stasis and change in axial flow.

Pavementing - due to endothelial cells swollen and more sticky.

Leucocytes more adhesive.

Binding by a plasma component

Emigration - of leucocytes by amoeboid movement between endhothe1ial cells and beyond the basement membrane. The passive movement of RBCs through the gaps created during emigration is called diapedesis

Chemotaxis - This is a directional movement, especially of polymorphs and monocytes towards a concentration gradient resulting in aggregation of these cells at the site of inflammation. .Chemotactic agents may be:

  • Complement components. (C3and C5  fragments and C567)
  • Bacterial products.
  • Immune complexes, especially for monocyte.
  • Lymphocytic factor, especially for monocyte.

 Phagocytosis - This includes recognition, engulfment and intracellular degradation. It is aided by .Opsonins., Specific antibodies., Surface provided by fibrin meshwork.

Functions of the fluid and cellular exudate

1. Dilution of toxic agent.

2. Delivers serum factors like antibodies and complement components to site of inflammation.

3. Fibrin formed aids In :

  • Limiting inflammation
  • Surface phagocytosis
  • Framework for repair.

4. Cells of the exudate:

Phagocytose and destroy the foreign agent.

Release lytic enzymes when destroyed, resulting in extracellular killing of organisms- and digestion of debris to enable healing to occur

 

Explore by Exams