Talk to us?

General Pathology - NEETMDS- courses
NEET MDS Lessons
General Pathology

Infections caused by N. meningiditis

1.  Bacteremia without sepsis.  Organism spreads to blood but no major reaction.

2.  Meningococcemia without meningitis.  Fever, headache, petechia, hypotension, disseminated       intravascular coagulation.  The Waterhouse-Friderichsen Syndrome is a rapid, progressive meningococcemia with shock, organ failure, adrenal necrosis, and death.

3.  Meningitis with meningococcemia.  Sudden onset fever, chills, headache, confusion, nuchal rigidity.  This occurs rapidly.

4.  Meningoencephalitis.  Patients are deeply comatose.

Diagnosis made by examining CSF.

ADRENAL INSUFFICIENCY

Adrenocortical hypofunction is either primary (adrenocrtical) or secondary (ACTH deficiency). Primary insufficiency is divided into acute & chronic. 
Acute Adrenocortical Insufficiency occurs most commonly in the following clinical settings
- massive adrenal hemorrhage including  Waterhouse-Friderichsen syndrome 
- Sudden withdrawal of long-term corticosteroid therapy
- Stress in those with chronic adrenal insufficiency 

Massive adrenal hemorrhage may destroy the adrenal cortex sufficiently to cause acute adrenocortical 
insufficiency. This condition may occur 
1. in patients maintained on anticoagulant therapy 
2. in postoperative patients who develop DIC
3. during pregnancy 
4. in patients suffering from overwhelming sepsis (Waterhouse-Friderichsen syndrome) 


Waterhouse-Friderichsen syndrome is a catastrophic syndrome classically associated with Neisseria meningitidis septicemia but can also be caused by other organisms, including Pseudomonas species, pneumococci & Haemophilus influenzae. The pathogenesis of the syndrome remains unclear, but probably involves endotoxin-induced vascular injury with associated DIC.


Chronic adrenocortical insufficiency (Addison disease) results from progressive destruction of the adrenal cortex. More than 90% of all cases are attributable to one of four disorders: 
1. autoimmune adrenalitis (the most common cause; 70% of cases) 
2. tuberculosis &fungal infections 
3. AIDS
4. Metastatic cancers   
In such primary diseases, there is hyperpigmentation of the skin oral mucosa due to high levels of MSH (associated with high levels of ACTH).

Autoimmune adrenalitis is due to autoimmune destruction of steroid-producing cells. It is either isolated associated other autoimmune diseases, such as Hashimoto disease, pernicious anemia, etc. 

Infections, particularly tuberculous and fungal

Tuberculous adrenalitis, which once was responsible for as many as 90% of cases of Addison disease, has become less common with the advent of antituberculous therapy. When present, tuberculous adrenalitis is usually associated with active infection elsewhere, particularly the lungs and genitourinary tract. Among fungi, disseminated infections caused by Histoplasma capsulatum is the main cause. 

AIDS patients are at risk for developing adrenal insufficiency from several infectious (cytomegalovirus, Mycobacterium avium-intracellulare) and noninfectious (Kaposi sarcoma) complications.
 
Metastatic neoplasms: the adrenals are a fairly common site for metastases in persons with disseminated carcinomas. Although adrenal function is preserved in most such patients, the metastatic growths sometimes destroy sufficient adrenal cortex to produce a degree of adrenal insufficiency. Carcinomas of the lung and breast are the major primary sources. 

Secondary Adrenocortical Insufficiency

Any disorder of the hypothalamus and pituitary, such as metastatic cancer, infection, infarction, or irradiation, that reduces the output of ACTH leads to a syndrome of hypoadrenalism having many similarities to Addison disease. In such secondary disease, the hyperpigmentation of primary Addison disease is lacking because melanotropic hormone levels are low. 

Secondary adrenocortical insufficiency is characterized by low serum ACTH and a prompt rise in plasma cortisol levels in response to ACTH administration. 

Pathological features of adrenocortical deficiency 

- The appearance of the adrenal glands varies with the cause of the insufficiency. 
- In secondary hypoadrenalism the adrenals are reduced to small, uniform, thin rim of atrophic yellow cortex that surrounds a central, intact medulla. Histologically, there is atrophy of cortical cells with loss of cytoplasmic lipid, particularly in the zonae fasciculata and reticularis. 
- In primary autoimmune adrenalitis there is also atrophy of the cortex associated with a variable lymphoid infiltrate that may extend into the subjacent medulla. The medulla is otherwise normal.  
- In tuberculosis or fungal diseases there is granulomatous inflammatory reaction. Demonstration of the responsible organism may require the use of special stains.  
- With metastatic carcinoma, the adrenals are enlarged and their normal architecture is obscured by the infiltrating neoplasm.  
 

Urinary tract infection
Most often caused by gram-negative, rod-shaped bacteria that are normal residents of the enteric tract, especially Escherichia coli.

Clinical manifestations: 

frequent urination, dysuria, pyuria (increased PMNs), hematuria, and bacteriuria.

May lead to infection of the urinary bladder (cystitis) or kidney (pyelonephritis).

Chemical Mediators In Inflammation

Can be classified as :

A. Neurogenic

Also called the Triple Response of Lewis. It involves neurogenic vasodilatation of arterioles due to antidromic axon reflex arc. The constituents of the response are:

1. arteriolar vasoconstriction followed by

2. arteriolar vasodilatation

3. swelling

B. Chemical

1. Amines: Histamine and 5 hydroxytryptamine. Released  from platelets and mast cells.

Actions: Immediate and short lived.

Dilatation of arterioles.

Increased capillary premeability.

Kinins: Bradykinin and kallidin These are present in inactive from and are  activated by kinin forming proteases

Actions:

Arteriolar dilatation.

Increased vascular permeability

Pain

Kinin forming proteases Plasmin and Kallikrein. Present as inactive precursors.

Cleavage products of complement C3a und C5a are called anaphylatoxins

Actions:

Histamine release from mast cells

Chemotaxis (also C567 )

Enhance phagocytosis.

 Polymorph components

Cationic: proteins which cause

Increased permeability

Histamine release.

Chemotaxis of monocytes

Neutral proteases which:

Cleave C3 and C5 to active form

Convert Kininogen to Kinin

Increase permeability.

Acid proteases which liberate leucokinins

Slow reacting. substance of anaphylaxis: (SRS-A) is a lipid released from mast cell.

Action --Increases vascular permeability

Prostaglandins: E1 + E2 .

Platelets are rich source

Action:

Platelets are a rich source.

Vasodilatation.

Increased permeability.

Pain.

VIII. Miscellaneous: like

Tissue lactic acid.

 Bacterial toxins.

Glycogen storage diseases (glycogenoses)

1. Genetic transmission: autosomal recessive.

2. This group of diseases is characterized by a deficiency of a particular enzyme involved in either glycogen production or degradative pathways.

Diseases include:
on Gierke disease (type I)
(a) Deficient enzyme: glucose-6-phosphatase.
(b) Major organ affected by the buildup of glycogen: liver.

Pompe disease (type II)

(1) Deficient enzyme: α-glucosidase(acid maltase).
(2) Major organ affected by the buildup of glycogen: heart.

Cori disease (type III)
(1) Deficient enzyme: debranching enzyme (amylo-1,6-glucosidase).
(2) Organs affected by the buildup of glycogen: varies between the heart, liver, or skeletal muscle.

Brancher glycogenosis (type IV)
(1) Deficient enzyme: branching enzyme.
(2) Organs affected by the buildup of glycogen: liver, heart, skeletal muscle, and brain.

McArdle syndrome (type V)
(1) Deficient enzyme: muscle phosphorylase.
(2) Major organ affected by the buildup of glycogen: skeletal muscle.

Neuroblastoma and Related Neoplasms
Neuroblastoma is the second most common solid malignancy of childhood after brain tumors, accounting for up to10% of all pediatric neoplasms. They are most common during the first 5 years of life. Neuroblastomas may occur anywhere along the sympathetic nervous system and occasionally within the brain. Most neuroblastomas are sporadic. Spontaneous regression and spontaneous- or therapy-induced maturation are their unique features.  

Gross features
- The adrenal medulla is the commonest site of neuroblastomas. The remainder occur along the sympathetic chain, mostly in the paravertebral region of the abdomen and posterior mediastinum. 
- They range in size from minute nodules to large masses weighing more than 1 kg. 
- Some tumors are delineated by a fibrous pseudo-capsule, but others invade surrounding structures, including the kidneys, renal vein, vena cava, and the aorta. 
- Sectioning shows soft, gray-tan, brain-like tissue. Areas of necrosis, cystic softening, and hemorrhage may be present in large tumors. 

Microscopic features
- Neuroblastomas are composed of small, primitive-appearing neuroblasts with dark nuclei & scant cytoplasm, g rowing in solid sheets.  
- The background consists of light pinkish fibrillary material corresponding to neuritic processes of the primitive cells. 
- Typically, rosettes can be found in which the tumor cells are concentrically arranged about a central space filled with the fibrillary neurites.
- Supporting features include include immunochemical detection of neuron-specific enolase and ultrastructural demonstration of small, membrane-bound, cytoplasmic catecholamine-containing secretory granules.
- Some neoplasms show signs of maturation, either spontaneous or therapy-induced. Larger ganglion-like cells having more abundant cytoplasm with large vesicular nuclei and prominent nucleoli may be found in tumors admixed with primitive neuroblasts (ganglioneuroblastoma). Further maturation leads to tumors containing many mature ganglion-like cells in the absence of residual neuroblasts (ganglioneuroma). 

Many factors influence prognosis, but the most important are the stage of the tumor and the age of the patient. Children below 1 year of age have a much more favorable outlook than do older children at a comparable stage of disease. 

Miscroscopic features are also an independent prognostic factor; evidence of gangliocytic differentiation is indicative of a "favorable" histology. Amplification of the MYCN oncogene in neuroblastomas is a molecular event that has profound impact on prognosis. The greater the number of copies, the worse is the prognosis. MYCN amplification is currently the most important genetic abnormality used in risk stratification of neuroblastic tumors. 

About 90% of neuroblastomas produce catecholamines (as pheochromocytomas), which are an important diagnostic feature (i.e., elevated blood levels of catecholamines and elevated urine levels of catecholamine metabolites such as vanillylmandelic acid [VMA] and homovanillic acid [HVA]). 

Chronic lymphocytic leukaemia

Commoner in middle age. It starts insidiously and often runs a long chronic course

Features:

- Lymphnode enlargement.
- Anaemia (with haemolytic element).
- Moderate splenomegaly.
- Haemorrhagic tendency in late stages.
- Infection.

Blood picture:

- Anaemia with features of haemolytic anaemia
- Total leucocytic count of 50-100,OOO/cu.mm.
- Upto 90-95% cells are lymphocytes and prolymphocytes.
- Thrombocytopenia may be seen.

Bone marrow.  Lymphocytic series cells-are seen. Cells of other series are reduced,
 

Explore by Exams