Talk to us?

General Pathology - NEETMDS- courses
NEET MDS Lessons
General Pathology

Chickenpox (varicella)
 - primarily a childhood disease (70%)
 - incubation period 14-16 days; highly contagious; infectious 2 days before the vesicles until the last one dries.
 - present with generalized, intensely pruritic skin lesions starting as macules vesicles pustules (MVP-most valuable player) usually traveling centrifugally to the face and out to the extremities; unlike smallpox vesicles, chickenpox vesicles appear in varying stages of development as successive crops of lesions appear; intranuclear inclusions similar to HSV.
 - pneumonia develops in 1/3 of adults; MCC death in chickenpox.
 - association with Reye's syndrome if child takes aspirin. 

Causes of disease

The causes of disease Diseases can be caused by either environmental factors, genetic factors or a combination of the two.

A. Environmental factors

Environmental causes of disease are many and are classified into:

 

 1. Physical agents

 2. Chemicals

 3. Nutritional deficiencies & excesses

 4. Infections & infestations

 5. Immunological factors

 6. Psychogenic factors

 

 1. Physical agents

These include trauma, radiation, extremes of temperature, and electric power. These agents

apply excess physical energy, in any form, to the body.

2. Chemicals

With the use of an ever-increasing number of chemical agents such as drugs,

3. Nutritional deficiencies and excesses

Nutritional deficiencies may arise as a result of poor supply, interference with absorption, inefficient transport within the body, or defective utilization. It may take the form of deficiency.

4. Infections and infestations

Viruses, bacteria, fungi, protozoa, and metazoa all cause diseases. They may do so by causing cell destruction directly as in virus infections (for example poliomyelitis) or protozoal infections (for example malaria).

5. Immunological factors

A. Hypersensitivity reaction

This is exaggerated immune response to an antigen. For example, bronchial asthma can occur due to exaggerated immune response to the harmless pollen.

B. Immunodeficiency

This is due to deficiency of a component of the immune system which leads to increased susceptibility to different diseases. An example is AIDS.

C. Autoimmunity

This is an abnormal (exaggerated) immune reaction against the self antigens of the host. Therefore, autoimmunity is a hypersensitivity reaction against the self antigens. 4

6. Psychogenic factors

The mental stresses imposed by conditions of life, particularly in technologically advanced

communities, are probably contributory factors in some groups of diseases.

B. Genetic Factors

These are hereditary factors that are inherited genetically from parents.

IMMUNITY AND RESISTANCE TO INFECTION

Body's resistance to infection depends upon:

I. Defence mechanisms at surfaces and portals of entry.

II. Nonspecific or innate immunity

Ill. Specific immune response.

I.  Surface Defence Mechanisms

1. Skin:

(i) Mechanical barrier of keratin and desquamation.

(ii) Resident commensal organisms

(iii)Acidity of sweat.

(iv) Unsaturated fatty acids of sebum

2. Oropharyngeal

(i)Resident flora

(ii) Saliva, rich in lysozyme, mucin and Immunoglobulins (lgA).

3. Gastrointestinal tract.-

(i) Gastric HCI

(ii) Commensal organisms in Intestine

(iii) Bile salts

(iv) IgA.

(v) Diarrhoeal expulsion of irritants.

4. Respiratory tract:

(i) Trapping in turbinates

(ii) Mucus trapping

(iii) Expulsion by coughing and sneezing.

(iv) Ciliary propulsion.

(V) Lysozymes and antibodies in secretion.

(vi) Phagocytosis by alveolar macrophages.

5. Urinary tract:

(i) Flushing action.

(ii) Acidity

(iii) Phagocytosis by urothelial cells.

6. Vagina.-

(i) Desquamation.

(ii) Acid barrier.

(iii) Doderlein's bacilli (Lactobacilli)

7. Conjunctiva:

Lysozymes and IgA in tears

 

II. Nonspecific or Innate Immunity

1. Genetic factors

  • Species: Guinea pig is very susceptible to tuberculosis.
  • Race: Negroes are more susceptible to tuberculosis than whites
  • Sickle cells (HbS-a genetic determined Haemoglobinopathy resistant to Malarial parasite.

2. Age Extremes of age are more susceptible.

3. Hormonal status. Low resistance in:

  • Diabetes Mellitus.
  • Increased corticosteroid levels.
  • Hypothyroidism

4. Phagocytosis. Infections can Occur in :

  • Qualitative  or quantitative defects in neutrophils and monocytes.
  • Diseases of mononuclear phagocytic system (Reticuloendothelial cells-RES).
  • Overload blockade of RES.

5. Humoral factors

  • Lysozyme.
  • Opsonins.
  • Complement
  • Interferon (antiviral agent secreted by cells infected by virus) 

III. The Specific Immune Response

 

Definition

 

The immune response comprises all the phenomenon resulting from specific interaction

of cells of the immune-system with antigen. As a consequence of this interaction cells

, appear that mediate cellular immune response as well cells that synthesis and secrete

immunoglobulins

 

Hence the immune response has 2 components.

1. Cell mediated immunity (CMI).

2:. Humoral immunity (antibodies)

(I) Macrophages. Constituent of the M. P. S. These engulf the antigenic material.

(i) Most of the engulfed antigen is destroyed to' prevent a high dose paralysis of the Immune competent cells.

(ii) Some of it persists in the macrophage, retaining immunogenecity for continued stimulus to the immune system.

(iii)The antigenic information is passed on to  effectors cells. There are two proposed mechanisms for this:

(a) As messenger RNA with code for the specific antibody.

(b) As antigen-RNA complexes.

(2) Lymphocytes. There are 2 main classes recognized by surface characteristics.

(A) T-Lymyhocytes (thymus dependant) :- These are responsible for cellular immunity . On exposure to antigen

  • They transform to immunoblasts  which divide to form the effectors cells.
  • They secrete lymphokines These are
    • Monocyte migration inhibition factor
    • Macrophage activation factor
    • Chemotactic factor
    • Mitogenic factor
    • Transfer factor
    • Lymphotoxin which kills target cell
    • Interferon.
    • Inflammatory factor which increases permeability. .
  • Some remain as 1onglived memory cell for a  quicker recognition on re-exposure
  • They also modify immune response by other lymphocytes in the form of “T – helper cells “ and “T-suppressor” cells
  • They are responsible for graft rejection

(B) B-Lymphocytes (Bursa dependent). In birds the Bursa of Fabricious controls these cells. In man, its role is taken up by," gut associated lymphoid tissue)

(i) They are responsible for antibody synthesis. On stimulation they undergo blastic transformation and then differentiation to plasma cells, the site of immunoglobulin synthesis.

(ii) They also form memory cells. But these are probably short lived.

(C) In addition to T & B lymphocytes, there are some lymphocytes without the surface markers of either of them. These are 'null' cells-the-natural Killer (N,K.) cells and cells responsible for antibody dependent cellular-cytotoxicity.

(3) Plasma cells. These are the effectors cells of humoral immunity. They produce the immunoglobins, which are the effector molecules.

Mycobacterium leprae 

- tuberculoid type has intact cellular immunity
 - forms granulomas and kill the organisms (very few present).
 - evokes a positive lepromin skin test
 - localized skin lesions that lack symmetry
 - nerve involvement (organisms invade Schwann cells) that dominates the clinical picture and leads to skin anesthesia, muscle atrophy and autoamputation.
 - lepromatous leprosy patients lack cellular immunity
 - no granulomas
 - organisms readily identified
 - negative lepromin skin test
 - Bacteremia disseminates to cooler areas like the digits.
 - symmetrical, skin lesions that produce the classic leonine facies; biopsy reveals grentz zone in superficial dermis and then organisms in macrophages.
 - neural involvement is a late feature of the disease.
 - lepromin skin test is to determine host immunity; not a diagnostic test.
 - treatment: dapsone + rifampin

Actinic keratosis
1. Dry, scaly plaques with an erythematous base.
2. Similar to actinic cheilosis, which occurs along the vermilion border of the lower lip.
3. Caused by sun damage to the skin.
4. Dysplastic lesion, may be premalignant.

Osteogenesis Imperfecta (OI) (Brittle bone diseases) 

It is a group of hereditary disorders caused by gene mutations that eventuate in defective synthesis of and thus premature degradation of type I collagen. The fundamental abnormality in all forms of OI is too little bone, resulting in extreme susceptibility to fractures. The bones show marked cortical thinning and attenuation of trabeculae. 

Extraskeletal manifestations also occur because type I collagen is a major component of extracellular matrix in other parts of the body. The classic finding of blue sclerae  is attributable to decreased scleral collagen content; this causes a relative transparency that allows the underlying choroid to be seen. Hearing loss can be related to conduction defects in the middle and inner ear bones, and small misshapen teeth are a result of dentin deficiency 

Infections caused by N. meningiditis

1.  Bacteremia without sepsis.  Organism spreads to blood but no major reaction.

2.  Meningococcemia without meningitis.  Fever, headache, petechia, hypotension, disseminated       intravascular coagulation.  The Waterhouse-Friderichsen Syndrome is a rapid, progressive meningococcemia with shock, organ failure, adrenal necrosis, and death.

3.  Meningitis with meningococcemia.  Sudden onset fever, chills, headache, confusion, nuchal rigidity.  This occurs rapidly.

4.  Meningoencephalitis.  Patients are deeply comatose.

Diagnosis made by examining CSF.

Explore by Exams