Talk to us?

- NEETMDS- courses
NEET MDS Lessons
General Pathology

Immunoglobulins. (Ig)

 These are made up of polypeptide chains. Each molecule is constituted by two heavy and two light chains, linked by disulfide (S-S) bonds. The h~ chains are of 5 types, with corresponding, types or  immunoglobulin. IgG (gamma), IgM (mu µ ), IgA(alpha α), IgD(delta ), IgE(epsilon)

Each of these can have light chains of either kappa (k) or lambda type.Each chain has a constant portion (constant for the subtype) land a variable portion (antigen specific).

Enzyme digestion can split the Ig molecule into.2 Fab (antibody binding) fragments and one Fc (crystallisable, complement binding ) fragment.

THE ADRENAL GLANDS 
ADRENAL CORTEX 

The adrenal cortex synthesizes three different types of steroids: 
1. Glucocorticoids (principally cortisol), which are synthesized primarily in the zona fasciculata 
2. Mineralocorticoids, the most important being aldosterone, which is generated in the zona glomerulosa; and 
3. Sex steroids (estrogens and androgens), which are produced largely in the zona reticularis.  

ADRENAL MEDULLA

The adrenal medulla is populated by cells derived from the neural crest (chromaffin cells) and their supporting (sustentacular) cells. 
They secrete catecholamines in response to signals from preganglionic nerve fibers inthe sympathetic nervous system.

N. meningiditis

Major cause of fulminant bacteremia and meningitis.  Has a unique polysaccharide capsule.  It is spread person to person by the respiratory route.  Frequently carried in nasopharynx, and carriage rates increased by close quarters.  Special risk in closed populations (college dorms) and in people lacking complement.  Sub-saharan Africa has a “meningitis belt.”

Pathogenesis is caused by adherence factors that attach to non-ciliated nasopharyngeal epithelium. These factors include pili which promote the intial epithelial (and erythrocyte) attachment, and Opa/Opc surface binding proteins.

Adherence stimulates engulfment of bacteria by epithelial cells.  Transported to basolateral surface.

The polysaccharide capsule is a major virulence factor that prevents phagocytosis and lysis. 

A lipo-oligosaccharide endotoxin also contributes to sepsis.

Acne vulgaris is a chronic inflammatory disorder usually present in the late teenage years characterized by comedones, papules, nodules, and cysts.
 - subdivided into obstructive type with closed comedones (whiteheads) and open comedones (blackheads) and the inflammatory type consisting of papules, pustules, nodules, cysts and scars.
 - pathogenesis of inflammatory acne relates to blockage of the hair follicle with keratin and sebaceous secretions, which are acted upon by Propionibacterium acnes (anaerobe) that causes the release of irritating fatty acids resulting in an inflammatory response.
 - pathogenesis of the obstructive type (comedones) is related to plugging of the outlet of a hair follicle by keratin debris.
 - chocolate, shellfish, nuts iodized salt do not aggravate acne.
 - obstructive type is best treated with benzoyl peroxide and triretnoin (vitamin A acid)
 - treatment of inflammatory type is the above plus antibiotics (topical and/or systemic; erythromycin, tetracycline, clindamycin).

Str. Pneumoniae

Probably the most important streptococci.  Primary cause of pneumonia.  Usually are diplococci.  Ste. pneumoniae are α-hemolytic and nutritionally fastidious.  Often are normal flora.

Key virulence factor is the capsule polysaccharide which prevents phagocytosis.  Other virulence factors include pneumococcal surface protein and α-hemolysin.

Major disease is pneumonia, usually following a viral respiratory infection.  Characterized by fever, cough, purulent sputum.  Bacteria infiltrates alveoli.  PMN’s fill alveoli, but don’t  cause necrosis. Also can cause meningitis, otitis, sinusitis.

There are vaccines against the capsule polysaccharide.  Resistance to penicillin, cephalosporins, erythromycins, and fluoroquinalones is increasing.

Jaundice, or icterus

a. Characterized by yellowness of tissues, including skin, eyes, and mucous membranes. 
b. Caused by excess conjugated and/or unconjugated serum bilirubin. (increased levels of bilirubin in the blood)
lcterus is visible when the serum bilirubin exceeds 2 mg/dl. In unconjugated hyperbilirubinemia, bilirubin is not excreted into the urine because of tight protein binding in serum. In conjugated hyperbilirubinemia, small amounts of bilirubin are excreted in the urine because
it is less tightly protein bound. 

 NOTE: Concentration of bilirubin in blood plasma does not normally exceed 1 mg/dL (>17µmol/L). A concentration higher than 1.8 mg/dL (>30µmol/L) leads to jaundice.
 
 The conjunctiva of the eye are one of the first tissues to change color as bilirubin levels rise in jaundice. This is sometimes referred to as scleral icterus.

c. Types and causes include:
(1) Hepatocellular jaundice—caused by liver diseases such as cirrhosis and hepatitis.
(2) Hemolytic jaundice—caused by hemolytic anemias.
(3) Obstructive jaundice—caused by blockage of the common bile duct either by gallstones (cholelithiasis) or carcinomas involving the head of
the pancreas. 


Differential diagnosis 


Jaundice is classified into three categories, depending on which part of the physiological mechanism the pathology affects. The three categories are:

Pre-hepatic → The pathology is occurring prior to the liver.
Hepatic → The pathology is located within the liver.
Post-Hepatic → The pathology is located after the conjugation of bilirubin in the liver. 


Pre-hepatic
Pre-hepatic jaundice is caused by anything which causes an increased rate of hemolysis (breakdown of red blood cells).
Certain genetic diseases, such as sickle cell anemia, spherocytosis, thalassemia and glucose 6-phosphate dehydrogenase deficiency can lead to increased red cell lysis and therefore hemolytic jaundice. 
 Commonly, diseases of the kidney, such as hemolytic uremic syndrome, can also lead to coloration. Defects in bilirubin metabolism also
present as jaundice, as in Gilbert's syndrome (a genetic disorder of bilirubin metabolism which can result in mild jaundice, which is found in about 5% of the population) and Crigler-Najjar syndrome.
In jaundice secondary to hemolysis, the increased production of bilirubin, leads to the increased production of urine-urobilinogen. Bilirubin is not usually found in the urine because unconjugated bilirubin is not water-soluble, so, the combination of increased urine-urobilinogen with no bilirubin (since, unconjugated) in urine is suggestive of hemolytic jaundice. 

Laboratory findings include:
• Urine: no bilirubin present, urobilinogen > 2 units (i.e., hemolytic anemia causes increased heme metabolism; exception: infants where gut flora has not developed).
• Serum: increased unconjugated bilirubin.
• Kernicterus is associated with increased unconjugated bilirubin. 

Hepatocellular 
Hepatocellular (hepatic) jaundice can be caused by acute or chronic hepatitis, hepatotoxicity, cirrhosis, drug induced hepatitis and alcoholic liver disease. Cell necrosis reduces the liver's ability to metabolize and excrete bilirubin leading to a buildup of unconjugated bilirubin in the blood.


Laboratory findings depend on the cause of jaundice.
• Urine: Conjugated bilirubin present, urobilirubin > 2 units but variable (except in children). Kernicterus is a condition not associated with increased conjugated bilirubin.
• Plasma protein show characteristic changes.
• Plasma albumin level is low but plasma globulins are raised due to an increased formation of antibodies. 

Bilirubin transport across the hepatocyte may be impaired at any point between the uptake of unconjugated bilirubin into the cell and transport of conjugated bilirubin into biliary canaliculi.

Post-hepatic  

Post-hepatic jaundice, also called obstructive jaundice, is caused by an interruption to the drainage of bile in the biliary system. The most common causes are gallstones in the common bile duct, and pancreatic cancer in the head of the pancreas. Also, a group of parasites known as "liver flukes" can live in the common bile duct, causing obstructive jaundice. Other causes include strictures of the common bile duct, biliary atresia, cholangiocarcinoma, pancreatitis and pancreatic pseudocysts. A rare cause of obstructive jaundice is Mirizzi's syndrome. 


Pathophysiology 


When RBCs are damaged, their membranes become fragile and prone to rupture. As each RBC traverses through the reticuloendothelial system, its cell membrane ruptures when its membrane is fragile enough to allow this. 

Hemoglobin, are released into the blood. The hemoglobin is phagocytosed by macrophages, and split into its heme and globin portions. The globin portion, a protein, is degraded into amino acids and plays no role in jaundice. 

Two reactions then take place with the heme molecule. 
The first oxidation reaction is catalyzed by the microsomal enzyme heme oxygenase and results in biliverdin (green color pigment), iron
and carbon monoxide. 
The next step is the reduction of biliverdin to a yellow color tetrapyrol pigment called bilirubin by cytosolic enzyme biliverdin reductase. 

This bilirubin is "unconjugated," "free" or "indirect" bilirubin. Approximately 4 mg of bilirubin per kg of blood is produced each day.[11] The majority of this bilirubin comes from the breakdown of heme from expired red blood cells in the process just described.

However approximately 20 percent comes from other heme sources, including ineffective erythropoiesis, and the breakdown of other heme-containing proteins, such as muscle myoglobin and cytochromes.

Hepatic events

The unconjugated bilirubin then travels to the liver through the bloodstream. Because bilirubin is not soluble, however, it is transported through the blood bound to serum albumin. 
In Liver, it is conjugated with glucuronic acid (to form bilirubin diglucuronide, or just "conjugated bilirubin") to become more water soluble.
The reaction is catalyzed by the enzyme UDP-glucuronyl transferase.

This conjugated bilirubin is excreted from the liver into the biliary and cystic ducts as part of bile. Intestinal bacteria convert the bilirubin into urobilinogen. 

Urobilinogen can take two pathways. It can either be further converted into stercobilinogen, which is then oxidized to stercobilin and passed out in the feces, or it can be reabsorbed by the intestinal cells, transported in the blood to the kidneys, and passed out in the urine as the oxidised product urobilin. 

Stercobilin and urobilin are the products responsible for the coloration of feces and urine, respectively. 

Pulmonary embolism

A pulmonary embolism (thromboembolism) occurs when a blood clot, generally a venous thrombus, becomes dislodged from its site of formation and embolizes to the arterial blood supply of one of the lungs.

Clinical presentation

Signs of PE are sudden-onset dyspnea (shortness of breath, 73%), tachypnea (rapid breathing, 70%), chest pain of "pleuritic" nature (worsened by breathing, 66%), cough (37%), hemoptysis (coughing up blood, 13%), and in severe cases, cyanosis, tachycardia (rapid heart rate), hypotension, shock, loss of consciousness, and death. Although most cases have no clinical evidence of deep venous thrombosis in the legs, findings that indicate this may aid in the diagnosis.

Diagnosis

The gold standard for diagnosing pulmonary embolism (PE) is pulmonary angiography

An electrocardiogram may show signs of right heart strain or acute cor pulmonale in cases of large PEs

In massive PE, dysfunction of the right side of the heart can be seen on echocardiography, an indication that the pulmonary artery is severely obstructed and the heart is unable to match the pressure.

Treatment

Acutely, supportive treatments, such as oxygen or analgesia

In most cases, anticoagulant therapy is the mainstay of treatment. Heparin or low molecular weight heparins are administered initially, while warfarin therapy is given

Explore by Exams