Talk to us?

General Pathology - NEETMDS- courses
NEET MDS Lessons
General Pathology

Urinary tract infection
Most often caused by gram-negative, rod-shaped bacteria that are normal residents of the enteric tract, especially Escherichia coli.

Clinical manifestations: 

frequent urination, dysuria, pyuria (increased PMNs), hematuria, and bacteriuria.

May lead to infection of the urinary bladder (cystitis) or kidney (pyelonephritis).

Alzheimer’s disease
a. The most common cause of dementia in older people.
b. Characterized by degeneration of neurons in the cerebral cortex.
c. Histologic findings include amyloid plaques and neurofibrillary tangles.
d. Clinically, the disease takes years to develop and results in the loss of cognition, memory, and the ability to ommunicate. Motor problems, contractures, and paralysis are some of the symptoms at the terminal stage.

Immunoglobulins. (Ig)

 These are made up of polypeptide chains. Each molecule is constituted by two heavy and two light chains, linked by disulfide (S-S) bonds. The h~ chains are of 5 types, with corresponding, types or  immunoglobulin. IgG (gamma), IgM (mu µ ), IgA(alpha α), IgD(delta ), IgE(epsilon)

Each of these can have light chains of either kappa (k) or lambda type.Each chain has a constant portion (constant for the subtype) land a variable portion (antigen specific).

Enzyme digestion can split the Ig molecule into.2 Fab (antibody binding) fragments and one Fc (crystallisable, complement binding ) fragment.

Characteristics of Immunoglobulin subclasses

I. Ig G:

(i) Predominant portion (80%) of Ig.

(ii) Molecular weight 150, 000

(iii) Sedimentation coefficient of 7S.

(iv) Crosses placental barrier and to extra cellular fluid.

  • (v) Mostly neutralising effect. May be complement fixing.

(vi) Half life of 23 days.

2.IgM :

(i) Pentamer of Ig.

(ii) Molecular weight 900, 000

(iii) 19S.

(iv) More effective complement fixation and cells lysis

(v) Earliest to be produced in infections.

(vi) Does not cross placental barrier.

(vii) Halflife of 5 days.

3. Ig A :

  • Secretory  antibody. Found in intestinal, respiratory secretions tears, saliva and urine also.
  • Secreted  usually as a dinner with secretory piece.
  • Mol. weight variable (160,000+)
  • 7 S to 14 S.
  • Half life of 6 days.

4.Ig D :

  • Found in traces.
  • 7 S.
  • Does not cross placenta.

5. Ig E

  • Normally not traceable
  • 7-8 S (MoL weight 200,000)
  • Cytophilic antibody, responsible for some hypersensitivity states,

Pulmonary edema

Pulmonary edema is swelling and/or fluid accumulation in the lungs. It leads to impaired gas exchange and may cause respiratory failure.

Signs and symptoms

Symptoms of pulmonary edema include difficulty breathing, coughing up blood, excessive sweating, anxiety and pale skin. If left untreated, it can lead to death, generally due to its main complication of acute respiratory distress syndrome.

Diagnosis

physical examination: end-inspiratory crackles during auscultation (listening to the breathing through a stethoscope) can be due to pulmonary edema. The diagnosis is confirmed on X-ray of the lungs, which shows increased vascular filling and fluid in the alveolar walls.

Low oxygen saturation and disturbed arterial blood gas readings may strengthen the diagnosis

Causes

Cardiogenic causes:

  1. Heart failure
  2. Tachy- or bradyarrhythmias
  3. Severe heart attack
  4. Hypertensive crisis
  5. Excess body fluids, e.g. from kidney failure
  6. Pericardial effusion with tamponade

Non-cardiogenic causes, or ARDS (acute respiratory distress syndrome):

  1. Inhalation of toxic gases
  2. Multiple blood transfusions
  3. Severe infection
  4. Pulmonary contusion, i.e. high-energy trauma
  5. Multitrauma, i.e. severe car accident
  6. Neurogenic, i.e. cerebrovascular accident (CVA)
  7. Aspiration, i.e. gastric fluid or in case of drowning
  8. Certain types of medication
  9. Upper airway obstruction
  10. Reexpansion, i.e. postpneumonectomy or large volume thoracentesis
  11. Reperfusion injury, i.e. postpulmonary thromboendartectomy or lung transplantation
  12. Lack of proper altitude acclimatization.

Treatment

When circulatory causes have led to pulmonary edema, treatment with loop diuretics, such as furosemide or bumetanide, is the mainstay of therapy. Secondly, one can start with noninvasive ventilation. Other useful treatments include glyceryl trinitrate, CPAP and oxygen.

Myocardial infarction (MI)—heart attack

A. Ischemia versus MI: Ischemia is a reversible mismatch between the supply and demand of oxygen. Infarction
is an irreversible mismatch that results in cell death caused by the lack of blood flow (oxygenation). For instance, chest pain caused by ischemia can be relieved by administering nitroglycerin (a vasodilator) to the patient. If the patient has an MI, the pain will not be relieved with nitroglycerin.

1. MIs most commonly occur when a coronary artery is occluded by a thrombus generated in an atherosclerotic artery.

2. Symptoms include:
a. Chest pain, shortness of breath.
b. Diaphoresis (sweating), clammy hands.
c. Nausea, vomiting.

3. Consequences:
a. Death (one third of patients).
b. Arrhythmias (most common immediate cause of death).
c. Congestive heart failure.
d. Myocardial rupture, which may result in death from cardiac tamponade.
e. Thrombus formation on infarcted tissue; may result in systemic embolism.
 

Valvular disease
A. Generally, there are three types:
1. Stenosis—fibrotic, stiff, and thickened valves, resulting in reduced blood flow through the valve.

2. Regurgitation or valvular insufficiency— valves are unable to close completely, allowing blood to regurgitate.

3. Prolapse—“floppy” valves; may occur with or without regurgitation. The most common valvular defect.

Surface Defence Mechanisms

1. Skin:

(i) Mechanical barrier of keratin and desquamation.

(ii) Resident commensal organisms

(iii)Acidity of sweat.

(iv) Unsaturated fatty acids of sebum

2. Oropharyngeal

(i)Resident flora

(ii) Saliva, rich in lysozyme, mucin and Immunoglobulins (lgA).

3. Gastrointestinal tract.-

(i) Gastric HCI

(ii) Commensal organisms in Intestine

(iii) Bile salts

(iv) IgA.

(v) Diarrhoeal expulsion of irritants.

4. Respiratory tract:

(i) Trapping in turbinates

(ii) Mucus trapping

(iii) Expulsion by coughing and sneezing.

(iv) Ciliary propulsion.

(V) Lysozymes and antibodies in secretion.

(vi) Phagocytosis by alveolar macrophages.

5. Urinary tract:

(i) Flushing action.

(ii) Acidity

(iii) Phagocytosis by urothelial cells.

6. Vagina.-

(i) Desquamation.

(ii) Acid barrier.

(iii) Doderlein's bacilli (Lactobacilli)

7. Conjunctiva:

Lysozymes and IgA in tears

Explore by Exams