NEET MDS Lessons
General Pathology
Human immunodeficiency virus (HIV)
1. Part of the Retroviridae family (i.e., it is a retrovirus).
2. Basic virion structure
a. The nucleocapsid contains single stranded RNA and three enzymes: reverse transcriptase, integrase, and protease.
b. An exterior consists of two glycoproteins, gp120 and gp41, which are imbedded in the lipid bilayer. This lipid bilayer was obtained from the host cell via budding.
3. Virion characteristics
a. The HIV genome includes:
(1) gag gene—codes for core proteins.
(2) pol gene—codes for its three enzymes.
(3) env gene—codes for its two envelope glycoproteins.
b. HIV enzymes
(1) Reverse transcriptase—reverse transcription of RNA to viral DNA.
(2) Integrase—responsible for integrating viral DNA into host DNA.
(3) Protease—responsible for cleaving precursor proteins.
4. Pathogenicity
a. HIV mainly infects CD4 lymphocytes, or helper T cells. Its envelope protein, gp120, binds specifically with CD4 surface
receptors. After entry, viral RNA is transcribed by reverse transcriptase to viral DNA and integrated into the host DNA. New virions are synthesized and released by lysis of the host cell.
b. The predominant site of HIV replication is lymphoid tissues.
c. Although HIV mainly infects CD4 helper T cells, it can bind to any cell with a CD4 receptor, including macrophages, monocytes, lymph node dendritic cells, and a selected number of nerve cells. Macrophages are the first cells infected by HIV.
5. HIV infection versus acquired immunodeficiency syndrome (AIDS).
a. AIDS describes an HIV-infected person who has one of the following conditions:
(1) A CD4 lymphocyte count of less than 200.
(2) The person is infected with an opportunistic infection or other AIDS-defining illness, including (but not limited to) tuberculosis, recurrent pneumonia infections, or invasive cervical cancer.
b. The cause of death in an AIDS patient is most likely due to an opportunistic infection.
6. Common opportunistic infections associated with AIDS:
a. Pneumonia caused by Pneumocystis jiroveci (carinii).
b. Tuberculosis.
c. Periodontal disease—severe gingivitis, periodontitis, ANUG, necrotizing stomatitis.
d. Candidiasis.
e. Oral hairy leukoplakia (EBV).
f. Kaposi’s sarcoma (HHV-8).
g. Recurrent VZV infections.
h. Condyloma acuminatum or verruca vulgaris (warts, HPV)—less common.
i. CMV infections.
j. Disseminated herpes simplex, herpes zoster.
k. Hodgkin’s, non-Hodgkin’s lymphoma.
7. Laboratory diagnosis of HIV
a. ELISA test—detects HIV antibodies.
False negatives do occur.
b. Western blot—detects HIV proteins.
There is a 99% accuracy rate when both the ELISA test and Western blot are used to diagnose HIV infection.
c. PCR—more sensitive; can amplify and identify the virus at an early stage.
8. Treatment
a. Inhibitors of reverse transcriptase.
(1) Nucleoside analogs
(a) Inhibit viral replication via competitive inhibition.
(b) Examples: zidovudine (AZT), didanosine, lami- vudine, stavudine.
(2) Nonnucleoside inhibitors.
(a) Act by binding directly to reverse transcriptase.
(b) Examples: nevirapine, delavirdine.
b. Protease inhibitor.
c. “Triple cocktail” therapy—often consists of two nucleoside inhibitors and a protease inhibitor.
Respiratory Viral Diseases
Respiratory viral infections cause acute local and systemic illnesses. The common cold, influenza, pharyngitis, laryngitis (including croup), and tracheobronchitis are common.
An acute, usually afebrile, viral infection of the respiratory tract, with inflammation in any or all airways, including the nose, paranasal sinuses, throat, larynx, and sometimes the trachea and bronchi.
Etiology and Epidemiology
Picornaviruses, especially rhinoviruses and certain echoviruses and coxsackieviruses, cause the common cold. About 30 to 50% of all colds are caused by one of the > 100 serotypes of rhinoviruses.
Symptoms and Signs
Clinical symptoms and signs are nonspecific.
After an incubation period of 24 to 72 h, onset is abrupt, with a burning sensation in the nose or throat, followed by sneezing, rhinorrhea, and malaise.
Characteristically, fever is not present, particularly with a rhinovirus or coronavirus. Pharyngitis usually develops early; laryngitis and tracheobronchitis vary by person and causative agent. Nasal secretions are watery and profuse during the first days, but become more mucoid and purulent.
Cough is usually mild but often lasts into the 2nd wk.
Respiratory Viral Diseases
Respiratory viral infections cause acute local and systemic illnesses. The common cold, influenza, pharyngitis, laryngitis (including croup), and tracheobronchitis are common.
An acute, usually afebrile, viral infection of the respiratory tract, with inflammation in any or all airways, including the nose, paranasal sinuses, throat, larynx, and sometimes the trachea and bronchi.
Etiology and Epidemiology
Picornaviruses, especially rhinoviruses and certain echoviruses and coxsackieviruses, cause the common cold. About 30 to 50% of all colds are caused by one of the > 100 serotypes of rhinoviruses.
Symptoms and Signs
Clinical symptoms and signs are nonspecific.
After an incubation period of 24 to 72 h, onset is abrupt, with a burning sensation in the nose or throat, followed by sneezing, rhinorrhea, and malaise.
Characteristically, fever is not present, particularly with a rhinovirus or coronavirus. Pharyngitis usually develops early; laryngitis and tracheobronchitis vary by person and causative agent. Nasal secretions are watery and profuse during the first days, but become more mucoid and purulent.
Cough is usually mild but often lasts into the 2nd wk.
Viral meningitis
1. Can be caused by many different viruses, including cytomegalovirus, herpes virus, rabies, and HIV.
2. CSF fluid from a spinal tap differs from that seen in a bacterial infection. It shows mononuclear cells, higher levels of protein, and normal levels of glucose.
Ichthyosis vulgaris is a genetic disease characterized by increased cohesiveness of the cells in the stratum corneum, resulting up in a piling up stratum corneum (scales like a fish).
Joint pathology
1. Rheumatoid arthritis
a. Cause is autoimmune in nature.
b. More common in women aged 20 to 50.
c. Characterized by inflammation of the synovial membrane. Granulation tissue, known as pannus, will form in the synovium and expand over the articular cartilage. This causes the destruction of the underlying cartilage and results in fibrotic changes and ankylosis.
Scarring, contracture, and deformity of the joints may occur.
d. Clinical symptoms include swollen joints. It can affect any joint in the body.
2. Osteoarthritis
a. Most common arthritis.
b. Cause is unknown.
c. Higher incidence in women, usually after age 50.
d. Characterized by degeneration of the articular cartilage and the formation of osteophytes (bony spurs) at the margins of affected areas.
Clinical signs and symptoms include:
(1) Stiff and painful joints affecting joints in the hand (phalangeal joints) and weight-bearing joints.
(2) Heberden’s nodes—nodules at the distal interphalangeal joint.
(3) Bocard’s nodes—nodules at the proximal interphalangeal joint.
Nephrotic Syndrome
The patient will present with a triad of symptoms:
- Proteinuria, i.e. >3g/24hr-3.5g/24 hr
- Hypoalbuminaemia, i.e. <30g/L
- Oedema
>80% of cases are due to glomerulonephritis. In this syndrome, there is damage to podocytes
Clinical signs
- Pitting oedema, particularly in the limbs and around the eyes; may also cause genital oedema and ascites.
- Possible hypertension
Causes
- Primary causes – these are diagnoses of exclusion that are only made if secondary causes cannot be found
o Minimal change disease (MCD)
o Focal segmental glomerulosclerosis
o Membranous nephropathy
- Secondary causes – note that these fall into the same three categories as above:
o Minimal change disease – Hep B, SLE, diabetes M, sarcoidosis, syphilis, malignancy
o Focal segmental glomerulosclerosis –HIV, obesity, diabetes M, hypertensive nephrosclerosis
o Minimal change disease –drugs, malignancy, particularly Hodgkin’s lymphoma
- Differential diagnoses include cardiac failure, i.e. increased JVP, pulmonary oedema and mild proteinuria, and liver disease, i.e. reduced serum albumin.
- The condition causes an increased susceptibility to infection – partly due to loss of immunoglobulin in the urine. Patients tend to be prone to streptococcus infection, as well as bacterial peritonitis and cellulitis.
- Nephrotic syndrome also increases the risk of thromboembolism and hyperlipidaemia.
- The former is due to an increase in the synthesis of clotting factors and to platelet abnormalities, and the latter is a result of increased synthesis of these by the liver to counteract reduced oncotic pressure.
Investigations
- These are the same as those carried out in GN.
- Also, check for cholesterol as part of confirming the presence of hyperlipidemia.
- Renal biopsy – order this for all adults. In children, because the main cause is minimal change GN, steroids are the first-line treatment. Therefore, in children, biopsy is necessary only if pharmaceutical intervention fails to improve the situation.
- The hypercoagulant state seen in the nephrotic syndrome can be a risk factor for renal vein thrombosis. This can present as loin pain, haematuria, palpable kidney and sudden deterioration in kidney function. This should be investigated with Doppler USS, MRI or even renal angiography.
- Once diagnosed, give warfarin for 3 to 6 months.
Management
- Generally, this involves treatment of the underlying condition which is usually GN. Therefore, fluid management and salt intake restriction are priorities. The patient is usually given furosemide along with an ACE inhibitor and/or an angiotensin II receptor antagonist. Prophylactic heparin is given if the patient is immobile. Hyperlipidaemia can be treated with a statin.
Nephritic Syndrome
Acute and chronic
forms of the syndrome exist. The main difference between this and nephrotic syndrome is that in nephritic syndrome haematuria is present. There is also proteinuria, hypertension, uraemia, and possibly oliguria. The two standout features are hypertension and RBC casts. The urine will often appear ‘smoky’ in colour due to the presence of RBC casts. Very rarely, it may appear red
Causes
1. Post-streptococcal
2. Primary:
- Membranous glomerulonephritis
- Rapidly progressive glomerulonephritis
- IgA nephropathy (Berger’s disease)
3. Secondary
- HSP
- Vasculitis
Clinical Features
- Abrupt onset of :
o Glomerular haematuria (RBC casts or dysmorphic RBC)
o Non-nephrotic range proteinuria (< 2 g in 24 hrs)
o Oedema (periorbital, sacral )
o Hypertension
o Transient renal impairment (oliguria, uraemia)
- Urinary casts – these are cylindrical structures produced by the kidney and present in the urine in certain renal diseases. They form in the DCT and collecting duct, dislodging and passing in the urine where they are detected by microscopy. RBC casts are usually associated with nephritic syndrome. The presence of RBCs within a cast is always pathologic and strongly indicative of glomerular damage.
- The proteinuria present is often smaller than in nephrotic syndrome, thus a coexistent condition of nephrotic syndrome is not usually present.
- Encepelopathy may be present, particularly in children, due to electrolyte imbalances and hypertension. This type of presentation is indicative of glomerular damage, but requires renal biopsy to determine the exact problem. In this respect it is similar to nephrotic syndrome.
Overlapping of the two syndromes is possible as nephrotic syndrome may precede nephritic syndrome, although not vice-versa.
Mechanisms of the syndrome vary according to cause; both primary and secondary causes exist. Post-infectious GN is the classic illustration of nephritic syndrome, but the condition may be caused by other glomerulopathies and by systemic diseases such as connective tissue disorders
Two clinical terms to remember:
- Nephritic syndrome; which comprises edema, proteinuria, hypoalbuminemia, hematuria (smoky urine), oligurua and hypertension.
- Nephrotic syndrome; which comprises of albuminuria, hypoalbuminemia, edema, hyperlipidemia, lipiduria.