NEET MDS Lessons
General Pathology
Pemphigus
1. Ulcerative lesions on the skin and oral mucosa.
2. An autoimmune disease in which patients have autoantibodies against hemidemosomal attachment of epidermis cells.
3. Histologically characterized by acantholysis, in which epidermal cells appear to detach and separate from each other, as seen by Tzanck smears.
4. Can be life-threatening if untreated.
5. A positive Nikolsky sign is observed.
Because of sloughing of the epidermis, a red blister forms after pressure is applied to affected skin.
6. Treatment: corticosteroids.
Avitaminoses - Vitamin deficiencies are more commonly secondary disorders associated with malabsorption conditions and chronic alcoholism.
A. Vitamin A - (retinoids, fat soluble compounds derived from ß-carotene) The best-known effect of deficiency is an inability to see in weak light (night blindness due to decreased rhodopsin).
-> The pathology is also characterized by skin lesions (rash on the extremities with punctate erythematous lesions). In malnourished children, vitamin A supplements reduce the incidence of infections such as measles, even in children without signs of preexisting deficiency.
B. Vitamin D - (1, 25 OH2 D3) Deficiency produces osteomalacia (called rickets in children). Many of the effects of osteomalacia overlap with the more common osteoporosis, but the two disordersare significantly different.
-> The specific alteration in osteomalacia and rickets is a failure of mineralization of the osteoid matrix resulting in decreased appositional bone growth.
C. Vitamin E - Very rare. Occurs as a secondary disorder in conditions associated with fat maladsorption such as cystic fibrosis, pancreatitis, and cholestasis (bile-flow obstruction).
-> Vitamin E deficiency causes a neurological disorder characterized by sensory loss, ataxia and retinitis pigmentosa due to free radical mediated neuronal damage.
D. Vitamin K - (phylloquinone) Present in most leafy plants and also synthesized by intestinal bacteria. Vitamin K is required for the production of specific clotting factors and a deficiency is characterized by impaired coagulation (elevated clotting times). Although this can occur in newborns that are given breast milk low in vitamin K, the deficiency is almost always secondarily associated with the use of certain anti-coagulants or disorders such as obstructive jaundice, celiac, or pancreatic disease.
E. Thiamine - (B1) The deficiency is known as beriberi. Thiamine deficiency is characterized by a peripheral neuropathy that affects sensation particularly in the legs (associated with demyelination of peripheral nerves), in more severe cases Korsakoff syndrome (neuropathy characterized by impaired ocular motility, ataxia, and mental confusion) and cardiomyopathy can occur.
F. Nicotinamide (niacin) - The deficiency is known as pellagra. Primary deficiencies are associated with diets that consist primarily of a single low quality protein source (i.e. corn). It results most commonly as a complication of alcoholism.
-> The pathology is characterized by hyperkeratosis and vesiculation of skin, atrophy of the tongue epithelium, and a neuropathy that can affect cortex and peripheral neurons.
- Initial symptoms include a smooth, red tongue, a sore mouth, and ulceration of the inside of the cheeks.
- The skin on the neck, chest, and back of the hands may become brown and scaly.
- Often there is nausea, vomiting, and diarrhea. There may also be insomnia, depression, confusion, and rapid changes of mood. Long-standing pellagra can result in dementia and death.
G. Vitamin B12 - (cobalamin) Because cobalamin is synthesized by intestinal bacteria and is widely available in many foods, deficiencies are almost always secondary disorders associated with gastric atrophy (and decreased uptake via intrinsic factor), microbial proliferation (AIDS), long-term antacids, chronic alcoholism, idiopathic (age-related).
In addition to anemia, the primary clinical symptoms include a sensory neuropathy (polyneuropathy), sclerosis of the spinal cord and atrophy of some mucous tissues.
H. Vitamin C - (ascorbic acid) The classic deficiency is known as scurvy. The essential pathology involves an inability to produce mature collagen and hence affects connective tissue.
This is characterized by an inability to synthesize osteoid and dentin (and results in decreased wound healing) and a loss of integrity of blood vessel walls.
Oral lesions are only a feature of the advanced form of the disease; early signs include fatigue, dermatitis, and purpura. There can be abnormalities in the growing bones of infants.
I. Vitamin B6 - (Pyridoxine) A deficiency can lead to peripheral neuropathy, most commonly associated with multivitamin B deficiencies in malnutrition and alcoholism.
V. Major Minerals - Sodium, potassium, chlorine, and magnesium are required for life but dietary deficiencies do not develop.
A. Iodine - Essential for the synthesis of thyroid hormones, and severe iodine deficiency is associated with hypothyroidism. The compensatory activity of the thyroid gland causes a characteristic enlargement called goiter.
B. Calcium - Required for bone mineralization, the RDA for adults is 800 mg/day. Clinical trials have shown that 1000-2000 mg/day can delay the bone loss observed in the elderly and decrease the risk of osteoporosis. See also section IV B.
VI. Trace Elements - At least 10 elements (examples: Co, Mn, Si) are required in minute amounts for normal development and metabolism.
A. Zinc - A deficiency can result from inadequate amounts given during total parenteral nutrition or as a secondary effect of acrodermatitis enteropathica (autosomal recessive trait characterized by alopecia, dermatitis, and diarrhea - the disease responds to administration of zinc).
B. Copper - Deficiencies are rare and primarily associated with malabsorption syndromes and total parenteral nutrition. Copper is required for normal hematopoiesis and bone growth. A deficiency resembles iron deficiency anemia and osteoporosis.
C. Fluoride - Levels in drinking water greater than 1 ppm cause mottling of teeth and in areas with chronic naturally induced fluorosis there is abnormal calcification of ligaments and tendons.
Bullous and Vesicular Disease
1. There are many diseases characterized by the presence of vesicles and bullae filled fluid.
2. In pemphigus vulgaris, large, flaccid bullae filled with fluid occur on the skin and within the oral mucosa.
- immunologic disease with IgG antibodies against the intercellular attachment sites between keratinocytes (type II hypersensitivity).
- the vesicle in pemphigus vulgaris has a suprabasal location (just above the basal cell layer and resembling "tombstones")
- scattered keratinocytes in the fluid as a result of acantholysis.
- Nikolsky's sign is where the epidermis slips when touched with the finger.
- fatal disease if left untreated (systemic corticosteroids)
3. Bullous pemphigoid is an immunologic vesicular disease whose vesicle are in a subepidermal location.
- circulating IgG antibody against antigens in the basement membrane (type II hypersensitivity).
4. Dermatitis herpetiformis is an immunologic vesicular lesion characterized by the presence of IgA immune complexes (type III hypersensitivity) at the tips of the dermal papilla at the dermal/epidermal junction producing a subepidermal vesicle filled with neutrophils.
- strong association with gluten-sensitive enteropathy, or celiac disease.
INFLAMMATION
Response of living tissue to injury, involving neural, vascular and cellular response.
ACUTE INFLAMMATION
It involves the formation of a protein .rich and cellullar exudate and the cardinal signs are calor, dolor, tumour, rubor and function loss
The basic components of the response are
Haemodynamic changes.
Permeability changes
Leucocyte events.
1. Haemodynamic Changes :
- Transient vasoconstriction followed by dilatation.
- Increased blood flow in arterioles.
- More open capillary bed.
- Venous engorgement and congestion.
- Packing of microvasculature by RBC (due to fluid out-pouring)
- Vascular stasis.
- Change in axial flow (resulting in margination of leucocytes)
.2. Permeability Changes:
Causes.
- Increased intravascular hydrostatic pressure.
- Breakdown of tissue proteins into small molecules resulting in
- increased tissue osmotic pressure.
- Increased permeability due to chemical mediators, causing an
- immediate transient response. .
- Sustained response due to direct damage to microcirculation.
3. White Cell Events:
.Margination - due to vascular stasis and change in axial flow.
Pavementing - due to endothelial cells swollen and more sticky.
Leucocytes more adhesive.
Binding by a plasma component
Emigration - of leucocytes by amoeboid movement between endhothe1ial cells and beyond the basement membrane. The passive movement of RBCs through the gaps created during emigration is called diapedesis
Chemotaxis - This is a directional movement, especially of polymorphs and monocytes towards a concentration gradient resulting in aggregation of these cells at the site of inflammation. .Chemotactic agents may be:
- Complement components. (C3and C5 fragments and C567)
- Bacterial products.
- Immune complexes, especially for monocyte.
- Lymphocytic factor, especially for monocyte.
Phagocytosis - This includes recognition, engulfment and intracellular degradation. It is aided by .Opsonins., Specific antibodies., Surface provided by fibrin meshwork.
Functions of the fluid and cellular exudate
1. Dilution of toxic agent.
2. Delivers serum factors like antibodies and complement components to site of inflammation.
3. Fibrin formed aids In :
- Limiting inflammation
- Surface phagocytosis
- Framework for repair.
4. Cells of the exudate:
Phagocytose and destroy the foreign agent.
Release lytic enzymes when destroyed, resulting in extracellular killing of organisms- and digestion of debris to enable healing to occur
Bronchiectasis
- Bronchiectasis is abnormal and irreversible dilatation of the bronchi and bronchioles (greater than 2 mm in diameter) secondary to inflammatory weakening of bronchial wall.
- Occur in childhood and early adult life
- Persistent cough with copious amount of foul smelling purulent sputum
Aetiopathogenesis
Bronchial wall destruction is due to:
- Endobronchial obstruction due to foreign body
- Infection due to local obstruction or impaired defence mechanism
Clinical conditions:
- Hereditary and congenital factors
- Obstruction
- Secondary complication
Hereditary and congenital factors:
- Congenital bronchiectasis due to developmental defects
- Cystic fibrosis causing defective secretion resulting in obstruction
- Hereditary immune defiency diseases
- Immotile cilia syndrome- immotile cilia of respiratory tract, sperms causing Kartagener’s syndrome (bronchiectasis, situs inversus and sinusitis) and male infertility
- Allergic bronchial asthma patients
Obstruction:
Localised variety in one part of bronchial system.
Obstruction can be due to
Foreign body
Endobronchial tumors
Hilar lymph nodes
Inflammatory scarring (TB)
Secondary complication:
Necrotizing pneumonia in Staph infection and TB
Morphologic changes
- Affects distal bronchi and bronchioles
- Lower lobes more frequently
- Lungs involved diffusely/segmentally
- Left lower lobe than right
- Pleura fibrotic & thickened adherent to chest wall
C/S lung: Honey-combed appearance
Microscopic examination:
Bronchiole-dilated
Bronchial epithelium-normal, ulcerated, squamous metaplasia
Bronchial wall-infiltration by ac & Ch inflammatory cells,
destruction of muscle, elastic tissue
Lung parenchyma-fibrosis, surrounding tissue pneumonia
Pleura-fibrotic and adherent
Eosinophilia:
Causes
-Allergic disorders.
-Parasitic infection.
-Skin diseases.
-Pulmonary eosinophilia.
-Myeloproliferative lesions and Hodgkin's disease.
DIABETES MELLITUS
a group of metabolic disorders sharing the common underlying characteristic of hyperglycemia.
Diabetes is an important disease because
1. It is common (affects 7% of the population).
2. It increases the risk of atherosclerotic coronary artery and cerebrovascular diseases.
3. It is a leading cause of
a. Chronic renal failure
b. Adult-onset blindness
c. Non traumatic lower extremity amputations (due to gangrene)
Classification
Diabetes is divided into two broad classes:
1. Type1 diabetes (10%): characterized by an absolute deficiency of insulin secretion caused by pancreatic βcell destruction, usually as a result of an autoimmune attack.
2. Type2 diabetes (80%): caused by a combination of peripheral resistance to insulin action and an inadequate secretion of insulin from the pancreatic β cells in response to elevated blood glucose levels.
The long-term complications in kidneys, eyes, nerves, and blood vessels are the same in both types.
Pathogenesis
Type 1 diabetes is an autoimmune disease and as in all such diseases, genetic susceptibility and environmental influences play important roles in the pathogenesis. The islet destruction is caused primarily by T lymphocytes reacting against immunologic epitopes on the insulin hormone located within β-cell; this results in a reduction of β-cell mass. The reactive T cells include CD4+ T cells of the TH1 subset, which cause tissue injury by activating macrophages, and CD8+ cytotoxic T lymphocytes; these directly kill β cells and also secrete cytokines that activate further macrophages. The islets show cellular necrosis and lymphocytic infiltration (insulitis). Autoantibodies against a variety of β-cell antigens, including insulin are also detected in the blood and may also contribute to islet damage.
Type 2 Diabetes Mellitus: the pathogenesis remains unsettled. Environmental influences, such as inactive life style and dietary habits that eventuates in obesity, clearly have a role. Nevertheless, genetic factors are even more important than in type 1 diabetes. Among first-degree relatives with type 2 diabetes the risk of developing the disease is 20% to 40%, as compared with 5% in the general population.
The two metabolic defects that characterize type 2 diabetes are 1. A decreased ability of peripheral tissues to respond to insulin (insulin resistance) and 2. β-cell dysfunction manifested as inadequate insulin secretion in the face of hyperglycemia. In most cases, insulin resistance is the primary event and is followed by increasing degrees of β-cell dysfunction.
Morphology of Diabetes and Its Late Complications
The important morphologic changes are related to the many late systemic complications of diabetes and thus are likely to be found in arteries (macrovascular disease), basement membranes of small vessels (microangiopathy), kidneys (diabetic nephropathy), retina (retinopathy), and nerves (neuropathy). These changes are seen in both type 1 and type 2 diabetes.
The changes are divided into pancreatic & extrapancreatic
A. Pancreatic changes are inconstant and are more commonly associated with type 1 than with type 2 diabetes.
One or more of the following alterations may be present.
1. Reduction in the number and size of islets
2. Leukocytic infiltration of the islets (insulitis) principally byT lymphocytes.
3. Amyloid replacement of islets; which is seen in advanced stages
B. Extrapancreatic changes
1. Diabetic macrovascular disease is reflected as accelerated atherosclerosis affecting the aorta and other large and medium-sized arteries including the coronaries. Myocardial infarction is the most common cause of death in diabetics. Gangrene of the lower limbs due to advanced vascular disease, is about 100 times more common in diabetics than in the general population.
2. Hyaline arteriolosclerosis
is the vascular lesion associated with hypertension. It is both more prevalent and more severe in diabetics than in nondiabetics, but it is not specific for diabetes and may be seen in elderly nondiabetics without hypertension.
3. Diabetic microangiopathy
is one of the most consistent morphologic features of diabetes, which reflected morphologically as diffuse thickening of basement membranes. The thickening is most evident in the capillaries of the retina, renal glomeruli, and peripheral nerves. The thickened capillary basement membranes are associated with leakiness to plasma proteins. The microangiopathy underlies the development of diabetic nephropathy, retinopathy, and some forms of neuropathy.
4. Diabetic Nephropathy: renal failure is second only to myocardial infarction as a cause of death from diabetes.
Three lesions encountered are:
1. Glomerular lesions
2. Renal vascular lesions, principally arteriolosclerosis; and
3. Pyelonephritis, including necrotizing papillitis.
Glomerular lesions: these include
a. diffuse glomerular capillary basement membrane thickening
b. diffuse glomerular sclerosis : diffuse increase in mesangial matrix; always associated with the above.
c. nodular glomerulosclerosis (Kimmelstiel-Wilson lesion) refers to a rounded deposits of a laminated matrix situated in the periphery of the glomerulus
Pyelonephritis: both acute and chronic pyelonephritis are more common & more severe
Ocular Complications of Diabetes: Visual impairment up to total blindness may occur in long-standing diabetes. The ocular involvement may take the form of
a. retinopathy
b. cataract formation
c. glaucoma
In both forms of long-standing diabetes, cardiovascular events such as myocardial infarction, renal vascular insufficiency, and cerebrovascular accidents are the most common causes of mortality. Diabetic nephropathy is a leading cause of end-stage renal disease. By 20 years after diagnosis, more than 75% of type 1 diabetics and about 20% of type 2 diabetics with overt renal disease will develop end-stage renal disease, requiring dialysis or renal transplantation.
Diabetics are plagued by an enhanced susceptibility to infections of the skin, as well as to tuberculosis,
pneumonia, and pyelonephritis. Such infections cause the deaths of about 5% of diabetics.