Talk to us?

General Pathology - NEETMDS- courses
NEET MDS Lessons
General Pathology

NECROSIS

Definition: Necrosis is defined as the morphologic changes caused by the progressive degradative
action of enzymes on the lethally injured cell.

These changes are due to
I. Autolysis and
2. Heterolysis.

The cellular changes of necrosis i.e. death of circumscribed group of cells in continuity with living tissues are similar to changes in tissues following somatic death, except that in the former, there is leucocytic infiltration in reaction to the dead cells and the lytic
enzymes partly come from the inflammatory cell also. (Heterolysis). Cell death occurs in the normal situation of cell turnover also and this is called apoptosis-single cellular dropout.

Nuclear changes in necrosis

As cytoplasmic changes are a feature of degeneration ,similarly nuclear changes are the hallmark of necrosis. These changes are:
(i) Pyknosis –condensation of chromatin
(ii) Karyorrhexis - fragmentation
(iii) Karyolysis - dissolution


Types of necrosis

(1) Coagulative necrosis: Seen in infarcts. The architectural outlines are maintained though structural details are lost. E.g, myocardial infarct.
(2) Caseous necrosis: A variant of coagulative necrosis seen in tuberculosis. The architecture is destroyed, resulting in an  eosinophilic amorphous debris.
(3) Colliquative (liquifactive). Necrosis seen in Cerebral infarcts and suppurative necrosis.

Gangrenous necrosis: It is the necrosis with superadded putrefaction

May be:
a. dry - coagulative product.
b. Wet - when there is bacterial liquifaction.

Fat necrosis

May be:
a. Traumatic (as in breast and subcutaneous tissue).
b Enzymatic (as in pancreatitis). It shows inflammation of fat with formation of lipophages and giant cells.

This is often followed by deposition of calcium as calcium soaps.

Hyaline necrosis: Seen in skeletal muscles in typhoid and in liver ceIs in some forms of hepatitis.

Fibrinoid necrosis: In hypertension and in immune based diseases.
 

Bronchiectasis 
- Bronchiectasis is abnormal and irreversible dilatation of the bronchi and bronchioles (greater than 2 mm in diameter) secondary to inflammatory weakening of bronchial wall.
- Occur in childhood and early adult life
- Persistent cough with copious amount of foul smelling purulent sputum

Aetiopathogenesis
Bronchial wall destruction is due to:
- Endobronchial obstruction due to foreign body
- Infection due to local obstruction or impaired defence mechanism 

Clinical conditions:
- Hereditary and congenital factors
- Obstruction
- Secondary complication


Hereditary and congenital factors:
- Congenital bronchiectasis due to developmental defects
- Cystic fibrosis causing defective secretion resulting in obstruction
- Hereditary immune defiency diseases
- Immotile cilia syndrome- immotile cilia of respiratory tract, sperms causing Kartagener’s syndrome (bronchiectasis, situs inversus and sinusitis) and male infertility
- Allergic bronchial asthma patients

Obstruction:

Localised variety in one part of bronchial system.
Obstruction can be due to
Foreign body
Endobronchial tumors
Hilar lymph nodes
Inflammatory scarring (TB)

Secondary complication:

Necrotizing pneumonia in Staph infection and TB

Morphologic changes

- Affects distal bronchi and bronchioles
- Lower lobes more frequently
- Lungs involved diffusely/segmentally
- Left lower lobe than right
- Pleura fibrotic & thickened adherent to chest wall

C/S lung: Honey-combed appearance


Microscopic examination:
Bronchiole-dilated
Bronchial epithelium-normal, ulcerated, squamous metaplasia
Bronchial wall-infiltration by ac & Ch inflammatory cells,
destruction of muscle, elastic tissue 
Lung parenchyma-fibrosis, surrounding tissue pneumonia
Pleura-fibrotic and adherent

Rheumatic fever

Before antibiotic therapy, this was the most common cause of valvular disease.
1. Usually preceded by a group A streptococci respiratory infection; for example, strep throat.
2. All three layers of the heart may be affected. The pathologic findings include Aschoff bodies, which are areas of focal necrosis surrounded by a dense inflammatory infiltration.

3. Most commonly affects the mitral valve, resulting in mitral valve stenosis, regurgitation, or both.

Lupus erythematosus
 - chronic discoid lupus is primarily limited to the skin, while SLE can involve the skin and other systems.
 - pathogenesis: light and other external agents plus deposition of DNA (planted antigen) and immune complexes in the basement membrane.
 Histology:
 - basal cells along the dermal-epidermal junction and hair shafts (reason for alopecia) are vacuolated (liquefactive degeneration)
 - thickening of lamina densa as a reaction to injury.
 - immunofluorescent studies reveal a band of immunofluorescence (band test) in involved skin of chronic discoid lupus or involved/uninvolved skin of SLE.
 - lymphocytic infiltrate at the dermal-epidermal junction and papillary dermis.  

THROMBOSIS 
Pathogenesis (called Virchow's triad):
1. Endothelial* Injury ( Heart, Arteries)
2. Stasis
3. Blood Hypercoagulability

- Endothelial cells are special type of cells that cover the inside surface of blood vessels and heart.

CONTRIBUTION OF ENDOTHELIAL CELLS TO COAGULATION

Intact endothelial cells maintain liquid blood flow by: 

1- inhibiting platelet adherence
2- preventing coagulation factor activation
3- lysing blood clots that may form.

Endothelial cells can be stimulated by direct injury or by various cytokines that are produced during inflammation.

Endothelial injury results in:
1- expression of procoagulant proteins (tissue factor and vWF)→ local thrombus formation.
2- exposure of underlying vWF and basement membrane collagen  →  platelet aggregation and thrombus formation. 

RESPONSE OF VASCULAR WALL CELLS TO INJURY( PATHOLOGIC EFFECT OF VASCULAR HEALING) 

Injury to the vessel wall results in a healing response, involving:
- Intimal expansion (proliferating SMCs and newly synthesized ECM). This involves signals from ECs, platelets, and macrophages; and mediators derived from coagulation and complement cascades.

- luminal stenosis & blockage of vascular flow 

Causes of Endothelial injury
1. Valvulitis
2. MI
3. Atherosclerosis
4. Traumatic or inflammatory conditions
5. Increased Blood Pressure
6. Endotoxins
7. Hypercholesterolemia
8. Radiation
9. Smoking 

Stasis

- Stasis is a major factor in venous thrombi
- Normal blood flow is laminar (platelets flow centrally in the vessel lumen, separated from the endothelium by a slower moving clear zone of
plasma)
- Stasis and turbulence cause the followings:

Disuption of normal blood flow 
prevent dilution of activated clotting factor
retard inflow of clotting factor inhibitor
promote endothelial cell injury

Causes of Stasis
1. Atherosclerosis
2. Aneurysms
3. Myocardial Infarction ( Non-cotractile fibers)
4. Mitral valve stenosis (atrial dilation)
5. Hyper viscosity syndromes (PCV and Sickle Cell anemia)


Hypercoagulability
A. Genetic (primary):
- mutations in the factor V gene and the prothrombin gene are the most common
B. Acquired (secondary):
- multifactorial and more complicated 
- causes include: Immobilization, MI, AF, surgery, fracture, burns, Cancer, Prosthetic cardiac valves 

MORPHOLOGY OF THROMBI 

Can develop anywhere in the CVS (e.g., in cardiac chambers,  valves, arteries, veins, or capillaries).

Arterial or cardiac thrombi→ begin at sites of endothelial injury; and are usually superimposed on an atherosclerotic plaque. 

 Venous thrombi → occur at sites of stasis. Most commonly the veins of the lower extremities (90%)

 Thrombi are focally attached to the underlying vascular surface; arterial and venous thrombi both tend to propagate toward the heart.
→ The propagating portion of a thrombus is poorly attached → fragmentation and embolus formation

LINES OF ZAHN

Thrombi can have grossly (and microscopically) apparent laminations called lines of Zahn; these represent pale platelet and fibrin layers alternating with darker erythrocyte-rich layers. 

Such lines are significant in that they represent thrombosis of flowing blood. 

Mural thrombi = Thrombi occurring in heart chambers or in the aortic lumen.

Causes: -Abnormal myocardial contraction (e.g. arrhythmias, dilated cardiomyopathy, or MI) -endomyocardial injury (e.g. myocarditis, catheter trauma)

Vegetations ->Thrombi on heart valves 

1- Bacterial or fungal blood-borne infections - (infective endocarditis,). 

2- Non-bacterial thrombotic endocarditis occur on sterile valves.

Fate of thrombi 

1. Propagation → Thrombi accumulate additional platelets and fibrin, eventually causing vessel obstruction 

2. Embolization → Thrombi dislodge or fragment and are transported elsewhere in the vasculature 

3. Dissolution → Thrombi are removed by fibrinolytic activity (Usually in recent thrombi) 

4. Organization and recanalization → Thrombi induce inflammation and fibrosis. - recanalization (re-establishing some degree of flow) - Organization = ingrowth of endothelial cells, smooth cells and fibroblasts into the fibrin rich thrombus.

5. Superimposed infection (Mycotic aneurysm)

Venous thrombi → most common in veins of the legs 

a. Superficial: e.g. Saphenous veins. - can cause local congestion, swelling, pain, and tenderness along the course of the involved vein, but they rarely embolize

a. Deep: e.g. Popliteal, Femoral and iliac vein. - more serious because they may embolize - can occur with stasis or hypercoagulable states
 

Measles (rubeola) 

-incubation period 7 to 14 days 

-begins with fever (up to 40 degrees C), cough, conjunctivitis (photophobia is first sign), and coryza (excessive mucous production)Æfollowed by Koplik's spots (red with white center) in the mouth, posterior cervical Lymphadenopathy, and a generalized, blanching, maculopapular, brownish-pink rash (viral induced vasculitis) beginning at the hairline and extending down over the body which gradually resolves in 5 days with some desquamation. 

Metastatic Tumors 

These are the most common malignant tumor of bone. Certain tumors exhibit a distinct skeletal prediliction. In adults more than 75% of skeletal metastases originate from cancers of the prostate, breast, kidney, and lung. In children, neuroblastoma, Wilms' tumor, osteosarcoma, Ewing sarcoma, and rhabdomyosarcoma are the common sources of bony metastases. Most metastases involve the axial skeleton (vertebral column, pelvis, ribs, skull, sternum), proximal femur, and humerus. The radiologic appearance of metastases can be purely osteolytic, purely osteoblastic, or mixed osteolytic-osteoblastic (majority of cases). In lytic lesions (e.g., kidney& lung), the metastatic cells secrete substances such as prostaglandins, interleukins, etc. that stimulate osteoclastic bone resorption; the tumor cells themselves do not directly resorb bone. Similarly, metastases that elicit a blastic response (e.g., prostate adenocarcinoma) do so by stimulating osteoblastic bone formation.

Explore by Exams