NEET MDS Lessons
General Pathology
Cor pulmonale
a failure of the right side of the heart. It is caused by prolonged high blood pressure in the right ventricle of the heart, which in turn is most often caused by pulmonary hypertension - prolonged high blood pressure in the arteries or veins of the lungs. People with heart disease, or lung diseases such as cystic fibrosis, are at greater risk.
Pathophysiology
There are several mechanisms leading to pulmonary hypertension and cor pulmonale:
Pulmonary vasoconstriction
Anatomic changes in vascularisation
Increased blood viscosity
Primary pulmonary hypertension
Causes
Acute:
• Massive pulmonary embolization
• Exacerbation of chronic cor pulmonale
Chronic:
• COPD
• Loss of lung tissue following trauma or surgery
Blood-Lymphatic Pathology
Disorders of primary hemostasis
1. General characteristics of disorders of primary hemostasis (due to problems of blood vessels or platelets):
a. Occur early in life.
b. Unlike secondary hemostasis, bleeding occurs in more superficial areas such as skin and mucous membranes rather than in secondary hemostasis.
c. Signs include petechiae.
d. Can be caused by vascular and platelet abnormalities or alterations in the plasma proteins required for adhesion of platelets to vascular subendothelium.
e. Laboratory findings include prolonged bleeding time, as seen in platelet disorders.
2. Vascular abnormalities
Scurvy
(1) Caused by a vitamin C deficiency leading to decreased synthesis of collagen. Note: vitamin C is necessary for the formation of collagen via hydroxylation of lysine and proline.
(2) Symptoms include:
- Delayed wound healing.
- Petechiae and ecchymosis.
- Gingival bleeding, swelling, and ulcerations.
3. Platelet abnormalities
a. Thrombocytopenia
(1) Characterized by a decreased number of platelets.
(2) The most common type of bleeding disorder.
(3) Can be caused by a number of diseases, such as irradiation, acute leukemia, disseminated intravascular coagulation (DIC), or idiopathic thrombocytopenic purpura (ITP).
b. Thrombocytopenic purpura
(1) Idiopathic: An autoimmune disease characterized by the presence of autoantibodies against platelets, resulting in the removal of platelets by splenic macrophages.
(2) May also be drug-induced.
Disorders of secondary hemostasis
1. General characteristics of disorders of secondary hemostasis (due to problems with clotting factors):
a. Symptoms occur later in life.
b. As compared to disorders of primary hemostasis, bleeding occurs in deeper areas and larger vessels (i.e., joint spaces).
c. Laboratory findings include abnormal:
- Partial thromboplastin time (PTT)—measures the intrinsic and common clotting pathway (i.e., tests all coagulation factors except factor 7).
- Prothrombin time (PT)—measures the extrinsic pathway.
- Does not affect the bleeding time.
Hemophilia
a. Caused by a deficiency of particular clotting factor(s).
b. All types of hemophilia affect the intrinsic pathway of the clotting cascade.
c. Signs and symptoms include:
- Prolonged PTT.
- Continuous bleeding from cuts or trauma, which can lead to excessive blood loss.
- Bleeding into joint cavities (hemarthroses) and muscle.
Two types:
(1) Hemophilia A (classic hemophilia)
- Caused by a deficiency of factor 8 (antihemophilic factor).
- Transmission: sex-linked recessive—only occurs in males; however, females can be carriers.
(2) Hemophilia B (Christmas disease)
- Caused by a deficiency of factor 9 (plasma thromboplastin).
- Transmission: sex-linked recessive—only occurs in males; however, females can be carriers.
- Lower incidence rate than hemophilia A.
(3). Vitamin K deficiency
- Causes include malnutrition and malabsorption of fats.
- A decrease in clotting factors 2, 7, 9, and 10 and prothrombin is observed.
- Prolonged PT.
Disorders of both primary and secondary hemostasis
1. von Willebrand’s disease
a. Characterized by a defective von Willebrand’s factor (vWF). Defective vWF affects both primary hemostasis by affecting platelet adhesion to
endothelium, and secondary hemostasis, by a defective factor 8.
b. Genetic transmission: autosomal dominant.
It is the most common hereditary bleeding disorder.
2. Liver disease—disease of the liver results in a decreased production of coagulation factors and therefore can lead to problems with hemostasis.
3. Disseminated intravascular coagulation a condition in which clots form throughout the vasculature. This uses up all available clotting factors and platelets, resulting in problems with bleeding.
ADRENAL INSUFFICIENCY
Adrenocortical hypofunction is either primary (adrenocrtical) or secondary (ACTH deficiency). Primary insufficiency is divided into acute & chronic.
Acute Adrenocortical Insufficiency occurs most commonly in the following clinical settings
- massive adrenal hemorrhage including Waterhouse-Friderichsen syndrome
- Sudden withdrawal of long-term corticosteroid therapy
- Stress in those with chronic adrenal insufficiency
Massive adrenal hemorrhage may destroy the adrenal cortex sufficiently to cause acute adrenocortical
insufficiency. This condition may occur
1. in patients maintained on anticoagulant therapy
2. in postoperative patients who develop DIC
3. during pregnancy
4. in patients suffering from overwhelming sepsis (Waterhouse-Friderichsen syndrome)
Waterhouse-Friderichsen syndrome is a catastrophic syndrome classically associated with Neisseria meningitidis septicemia but can also be caused by other organisms, including Pseudomonas species, pneumococci & Haemophilus influenzae. The pathogenesis of the syndrome remains unclear, but probably involves endotoxin-induced vascular injury with associated DIC.
Chronic adrenocortical insufficiency (Addison disease) results from progressive destruction of the adrenal cortex. More than 90% of all cases are attributable to one of four disorders:
1. autoimmune adrenalitis (the most common cause; 70% of cases)
2. tuberculosis &fungal infections
3. AIDS
4. Metastatic cancers
In such primary diseases, there is hyperpigmentation of the skin oral mucosa due to high levels of MSH (associated with high levels of ACTH).
Autoimmune adrenalitis is due to autoimmune destruction of steroid-producing cells. It is either isolated associated other autoimmune diseases, such as Hashimoto disease, pernicious anemia, etc.
Infections, particularly tuberculous and fungal
Tuberculous adrenalitis, which once was responsible for as many as 90% of cases of Addison disease, has become less common with the advent of antituberculous therapy. When present, tuberculous adrenalitis is usually associated with active infection elsewhere, particularly the lungs and genitourinary tract. Among fungi, disseminated infections caused by Histoplasma capsulatum is the main cause.
AIDS patients are at risk for developing adrenal insufficiency from several infectious (cytomegalovirus, Mycobacterium avium-intracellulare) and noninfectious (Kaposi sarcoma) complications.
Metastatic neoplasms: the adrenals are a fairly common site for metastases in persons with disseminated carcinomas. Although adrenal function is preserved in most such patients, the metastatic growths sometimes destroy sufficient adrenal cortex to produce a degree of adrenal insufficiency. Carcinomas of the lung and breast are the major primary sources.
Secondary Adrenocortical Insufficiency
Any disorder of the hypothalamus and pituitary, such as metastatic cancer, infection, infarction, or irradiation, that reduces the output of ACTH leads to a syndrome of hypoadrenalism having many similarities to Addison disease. In such secondary disease, the hyperpigmentation of primary Addison disease is lacking because melanotropic hormone levels are low.
Secondary adrenocortical insufficiency is characterized by low serum ACTH and a prompt rise in plasma cortisol levels in response to ACTH administration.
Pathological features of adrenocortical deficiency
- The appearance of the adrenal glands varies with the cause of the insufficiency.
- In secondary hypoadrenalism the adrenals are reduced to small, uniform, thin rim of atrophic yellow cortex that surrounds a central, intact medulla. Histologically, there is atrophy of cortical cells with loss of cytoplasmic lipid, particularly in the zonae fasciculata and reticularis.
- In primary autoimmune adrenalitis there is also atrophy of the cortex associated with a variable lymphoid infiltrate that may extend into the subjacent medulla. The medulla is otherwise normal.
- In tuberculosis or fungal diseases there is granulomatous inflammatory reaction. Demonstration of the responsible organism may require the use of special stains.
- With metastatic carcinoma, the adrenals are enlarged and their normal architecture is obscured by the infiltrating neoplasm.
Muscle pathology
1. Myasthenia gravis
a. An autoimmune disease caused by autoantibodies to acetylcholine receptors at the neuromuscular junctions.
b. Characterized by muscle weakness or the inability to maintain long durations of muscle contractions; this worsens during exercise but recovers after rest.
c. Affects various muscle groups, including:
(1) Eyes—diplopia, ptosis.
(2) Neck—dysphagia, problems swallowing or speaking.
(3) Extremities—arms and legs.
d. Treatment: cholinesterase inhibitors(neostigmine), anti-immune therapy.
2. Muscle tumors
a. Rhabdomyoma—benign tumor of skeletal muscle.
b. Leiomyoma
(1) Benign tumor of smooth muscle.
(2) Most common tumor found in women.
(3) Usually affects the uterus, although it can occur anywhere.
c. Rhabdomyosarcoma
(1) Malignant tumor of skeletal muscle.
(2) Most common sarcoma found in children.
(3) Usually affects head and neck region—orbit, nasal cavity, and nasopharynx.
Multiple Endocrine Neoplasia Syndromes (MEN)
The MEN syndromes are a group of inherited diseases resulting in proliferative lesions (hyperplasias, adenomas, and carcinomas) of multiple endocrine organs. Even in one organ, the tumors are often multifocal. These tumors are usually more aggressive and recur in a higher proportion of cases than similar but sporadic endocrine tumors.
Multiple Endocrine Neoplasia Type 1 (MEN1) is inherited in an autosomal dominant pattern. The gene (MEN1) is a tumor suppressor gene; thus, inactivation of both alleles of the gene is believed to be the basis of tumorigenesis. Organs commonly involved include the parathyroid, pancreas, and pituitary (the 3 Ps). Parathyroid hyperplasia is the most consistent feature of MEN-1 but endocrine tumors of the pancreas are the leading cause of death because such tumors are usually aggressive and present with metastatic disease.
Zollinger-Ellison syndrome, associated with gastrinomas, and hypoglycemia, related to insulinomas, are common endocrine manifestations. Prolactin-secreting macroadenoma is the most frequent pituitary tumor in MEN-1 patients.
Multiple Endocrine Neoplasia Type 2 (MEN2)
MEN type 2 is actually two distinct groups of disorders that are unified by the occurrence of activating mutations of the RET protooncogene. Both are inherited in an autosomal dominant pattern.
MEN 2A
Organs commonly involved include:
Medullary carcinoma of the thyroid develops in virtually all cases, and the tumors usually occur in the first 2 decades of life. The tumors are commonly multifocal, and foci of C-cell hyperplasia can be found in the adjacent thyroid. Adrenal pheochromocytomas develop in 50% of patients; fortunately, no more than 10% are malignant. Parathyroid gland hyperplasia with primary hyperparathyroidism occurs in a third of patients.
Multiple Endocrine Neoplasia, Type 2B
Organs commonly involved include the thyroid and adrenal medulla. The spectrum of thyroid and adrenal medullary disease is similar to that in MEN-2A. However, unlike MEN-2A, patients with MEN-2B:
1. Do not develop primary hyperparathyroidism
2. Develop extraendocrine manifestations: ganglioneuromas of mucosal sites (gastrointestinal tract, lips, tongue) and marfanoid habitus
Haemolytic anaemia
Anemia due to increased red cell destruction (shortened life span)
Causes:
A. Corpuscular defects:
1.Membrane defects:
- Spherocytosis.
- Elliptocytosis.
2. Haemoglobinopathies:
- Sickle cell anaemia.
- Thalassaemia
- Hb-C, HBD, HbE.
3. Enzyme defects .deficiency of:
- GIucose -6 phosphate dehydrogenase (G6-PD)
- Pyruvate kinase
4. Paroxysmal nocturnal haemoglobinuria.
B. Extracorpusular mechanisms
1. Immune based:
- Autoimmune haemolytic anaemia.
- Haemolytic disease of new born.
- Incompatible transfusion.
- Drug induced haemolysis
2. Mechanical haemolytic anaemia.
3. Miscellaneous due to :
- Drugs and chemicals.
- Infections.
- Burns.
features of haemolytic anaemia
- Evidence of increased Hb breakdown:
-> Unconjugated hyperbilirubinaemia.
-> Decreased plasma haptoglobin.
-> Increased urobilinogen and stercobilinogen.
-> Haemoglobinaemia, haemoglobinuria and haemosiderinuria if Intravascular haemolysis occurs.
- Evidence or compensatory erythroid hyperplasia:
-> Reticulocytosis and nucleated RBC in peripheral smear.
-> Polychromasia and macrocytes
-> Marrow erythroid hyperplasia
-> Skull and other bone changes.
- Evidences of damage to RBC:
-> Spherocytes and increased osmotic fragility
-> Shortened life span.
-> Fragmented RBC.
-> Heinz bodies.
Pyelonephritis
- A bacterial infection that affects the renal tubules, interstitium, and renal pelvis.
- One of the most common renal diseases.
- Usually caused by gram-negative, rod-shaped bacteria that are part of the normal flora of the enteric tract. Most commonly caused by Escherichia coli, followed by Proteus, Klebsiella, and Enterobacter.
- The infecting bacteria are usually from the patient’s own enteric flora an example of an endogenous infection.
- Usually associated with a urinary tract infection (acute pyelonephritis) or involved with another precipitating condition, such as obstruction (chronic pyelonephritis).