Talk to us?

- NEETMDS- courses
NEET MDS Lessons
General Pathology

CHRONIC INFLAMMATlON

When the inflammatory reaction instead of subsiding after the acute phase (or without entering an acute phase), persists as a smouldering lesion, it is called chronic inflammation. .

Characteristics

  • Predominantly mononuclear response.
  • Inflamation.and..repair going on simultaneously.
  • Usually results in more prominent-scarring.

Causes:

Chronicity may be due to :

- Defective defence mechanisms.

- Persistence of injurious agent.

(a) Certain organisms resist phagocytosis and destruction e.g tubercle bacillus, fungi

(b) insoluble particulate matter e.g., crystals. fibres suture materials.

(c) Constants supply of causative agent as in autoimmune disease where body reacts against its own tissues.

- Defective healing.

 

Granulomatous inflammation

It is a type of chronic inflammation characterised by localised collections of histiocytes.

These cells are usually accompanied by lymphocytes, fibroblasts and giant cells also.

Granulomas are characteristically seen in diseases like tuberculosis. syphilis, leprosy, sarcoidosis, fungal infections etc. In some of these, the lesion is morphologically distinct  enough to point to the type of underlying disease. These are sometimes called' specific' granulomas. Granulomas can also be elicited by particulate, insoluble foreign material e.g. granuloma, suture granuloma, cholesterol granuloma (organising haemorrhages).

Keratoses (Horny Growth)
1. Seborrheic keratosis
is a common benign epidermal tumor composed of basaloid (basal cell-like) cells with increased pigmentation that produce a raised, pigmented, "stuck-on" appearance on the skin of middle-aged individuals.
 - they can easily be scraped from the skin's surface.
 - frequently enlarge of multiply following hormonal therapy.
 - sudden appearance of large numbers of Seborrheic keratosis is a possible indication of a malignancy of the gastrointestinal tract (Leser-Trelat sign).

 2. An actinic keratosis is a pre-malignant skin lesion induced by ultraviolet light damage.
 - sun exposed areas.
 - parakeratosis and atypia (dysplasia) of the keratinocytes.
 - solar damage to underlying elastic and collagen tissue (solar elastosis).
 - may progress to squamous carcinoma in situ (Bowen's disease) or invasive cancer.

 3. A keratoacanthoma is characterized by the rapid growth of a crateriform lesion in 3 to 6
weeks usually on the face or upper extremity.
 - it eventually regresses and involutes with scarring.
 - commonly confused with a well-differentiated squamous cell carcinoma. 

Thrombosis

Definition-The formation from constituents of the blood, of a mass within the venous or arterial vasculature of a living animal. Natural defense of the body to acute vascular injury.

Pathologic thrombosis includes deep venous thrombosis (DVT), pulmonary embolism (PE), coronary artery thrombosis leading to myocardial infarct and cerebrovascular thrombosis leading to stroke.

Coagulated blood- clots formed 

Clot – formation of solid mass of blood components formed outside the vascular tree
Thrombosis with resulting embolic phenomena is important cause of morbidity and mortality.

Haemostatic system allows blood to remain in fluid form under normal conditions and causes the development of temporary thrombus at site of vascular injury.

Components of haemostatic system:
1.    Platelets
2.    Vascular endothelium
3.    Procoagulant plasma protein clotting factors
4.    Natural anticoagulants
5.    Fibrinolytic proteins
6.    Antifibrinolytic proteins

Normal haemostasis:
1.    Primary haemostasis-platelet plug formation
2.    Secondary haemostasis-stable plug or thrombus
3.    Natural anticoagulants-confines thrombus site and size to maintain blood flow
4.    Fibrinolysis-degrades fibrin , limits thrombus size and dissolves thrombus once vessel injury is repaired

Changes in any of these factors may result in pathologic thrombosis.

Pathophysiology of thrombosis:
Virchow’s Triad-Thrombosis results from a) decreased blood flow b) vascular endothelial injury and c) alterations in the components of blood.

Vessel wall:
EC (intima), smooth muscle cells (media) and the connective tissue (adventitia).Vascular endothelium is thromboresistant. EC injury leads to TF expression and thrombosis.
Vessel wall has antiplatelet, anticoagulant and fibrinolytic activities which make it thromboresistant.
Antiplatelet activities:
1.    Prostacyclin synthesized by EC in response to thrombin. Inhibits platelet adhesion as well as causes vasodilation
2.    NO regulates vascular tone as well as functioning as inhibitor of platelet adhesion. Constitutive expression as well as induced expression by EC in response to cytokines
3.    Ectozymes which metabolize ADP and ATP to AMP and adenosine. Adenosine inhibits platelet function, ADP is platelet agonist

Anticoagulant activities:
1.    Synthesis of heparin like GAG which inactivate activated clotting factors
2.    Protein C and S and thrombomodulin-Thrombin generated binds to thrombomodulin which activates protein C which then binds to Protein S and this inhibits coagulation by its proteolytic effect on Factors Va and VIIIa
3.    TFPI is synthesized by EC and  regulates TF-VIIa activation of Factor X. Also inhibits vascular cell proliferation

Fibrinolytic activities:
1.    Secretion and synthesis of plasminogen activators TPA in response to thrombin and vasoactive stimulants such as vasopressin and histamine
2.    Synthesis of urokinase in response to inflammatory cytokines
3.    FDP’s generated have antiplatelet and antithrombin activity
4.    Secretion of PAI

Prothrombotic properties of vascular endothelium promote coagulation with appropriates stimuli.

EC exposure to stimuli such as trauma, cytokines, atherogenic stimuli, endotoxins and immune complexes result in increased TF expression, reduced Protein C activation and reduced fibrinolysis so converting an antithrombotic surface to a prothrombotic surface.
Inherited conditions which result in abnormalities of EC derived or regulated proteins will cause thrombosis.

Arterial thrombosis:
1.    Abnormal vessel wall due to atherosclerotic plaque rupture, arterial outflow obstruction, vessel dissection EC injury promote platelet adhesion and activation
2.    Release of contents of platelet granules cause recruitment  and activation of additional platelets
3.    Thromboxane synthesis induces platelet aggregation
4.    Thrombin generation due to presence of PL

Platelets are pathogenetically more important in arterial thrombi thus antiplatelet agents are very important in arterial thrombosis management.

Venous thrombosis:
1.    Vessel wall is usually normal except if there is direct vessel trauma, extrinsic venous compression or damage due to drugs like chemotherapy
2.    Reduction in venous tone is important in pathophysiology

Venous thrombi can be of two types.

A. Phlebo thrombosis 
This is thrombus formation in an uninflammed vein usually due to stasis or changes in coagulability of blood. This occurs mostly in deep calf veins and varicose veins in the legs originating near valve pockets. They may propagate to extend to popliteal ,femoral and iliac-veins. These are a common source of massive emboli ‘Phlegmasia alba dolens’  (painful white leg) is a condition seen in late pregnancy and puerperium.  In this condition, in addition to iliofemoral thrombosis , there is arterial spasm

B Thrombophlebitis:
In this condition venous wall is inflamed and initiates thrombosis. This is more firmly attached to the vessel wall and also there is much less tendency for propagation Hence there is little chance or embolism.

Cardiac Thrombosis
Intra cardiac thrombus formation can be at 3 sites 

•    Valvular: as in endocarditis
•    Atrial : as in atrial fibrilation ('ball valve thrombus") over MacCallum’s patch is Rheumatic Fever.
•    Ventricular mural thrombus  over site of MI


Fate of Thrombus

- Resolution : if small, the thrombus is rapidly covered by endothelial cells. Then it can Resolved by a combination of retraction, phgocytosis , platelet autolysis, and fibrinolysis 
-  Organisation: there is in growth of vascular granulation tissue. This can result in
 a. recanalisation
 b. collagenisation and-scarring
-    Detachment resulting in thromboembolism
 

INFARCTION

 An infarct is an area of ischemic necrosis caused by occlusion of either the arterial supply or the venous drainage in a particular tissue 

 Nearly 99% of all infarcts result from thrombotic or embolic events 
 
other mechanisms include: local vasospasm, expansion of an atheroma, extrinsic compression of a vessel (e.g., by tumor); vessel twisting (e.g., in testicular torsion or bowel volvulus; and traumatic vessel rupture

MORPHOLOGY OF INFARCTS 

 infarcts may be either red (hemorrhagic) or white (anemic) and may be either septic or aseptic 

 All infarcts tend to be wedge-shaped, with the occluded vessel at the apex and the periphery of the organ forming the base 
 
 The margins of both types of infarcts tend to become better defined with time 
 
 The dominant histological characteristic of infarction is ischemic coagulative necrosis 
 
 most infarcts are ultimately replaced by scar. The brain is an exception, it results in liquefactive necrosis 
 
 RED INFARCTS:
occur in 
(1) venous occlusions (such as in ovarian torsion) 
(2) loose tissues (like lung) that allow blood to collect in the infarcted zone 
(3) tissues with dual circulations (lung and small intestine) 
(4) previously congested tissues because of sluggish venous outflow 
(5) when flow is re-established to a site of previous arterial occlusion and necrosis 

WHITE INFARCTS 

occur with: 
1) arterial occlusions 
2) solid organs (such as heart, spleen, and kidney).

Septic infarctions - occur when bacterial vegetations from a heart valve embolize or when microbes seed an area of necrotic tissue. - the infarct is converted into an abscess, with a correspondingly greater inflammatory response


FACTORS THAT INFLUENCE DEVELOPMENT OF AN INFARCT
- nature of the vascular supply 
- rate of development of the occlusion (collateral circulation ) 
- vulnerability to hypoxia - Neurons undergo irreversible damage 
- 3 to 4 minutes of ischemia. - Myocardial cells die after only 20 to 30 minutes of ischemia 
- the oxygen content of blood
 

Rickets and Osteomalacia 

Rickets in growing children and osteomalacia in adults are skeletal diseases with worldwide distribution. They may result from
1. Diets deficient in calcium and vitamin D
2. Limited exposure to sunlight (in heavily veiled women, and inhabitants of northern climates with scant sunlight)
3. Renal disorders causing decreased synthesis of 1,25 (OH)2-D or phosphate depletion 
4. Malabsorption disorders.

Although rickets and osteomalacia rarely occur outside high-risk groups, milder forms of vitamin D deficiency (also called vitamin D insufficiency) leading to bone loss and hip fractures are quite common in the elderly.

Whatever the basis, a deficiency of vitamin D tends to cause hypocalcemia. When hypocalcemia occurs, PTH production is increased, that ultimately leads to restoration of the serum level of calcium to near normal levels (through mobilization of Ca from bone & decrease in its tubular reabsorption) with persistent hypophosphatemia (through increase renal exretion of phosphate); so mineralization of bone is impaired or there is high bone turnover.

The basic derangement in both rickets and osteomalacia is an excess of unmineralized matrix. This complicated in rickets by derangement of endochondral bone growth.

The following sequence ensues in rickets:
1. Overgrowth of epiphyseal cartilage with distorted, irregular masses of cartilage
2. Deposition of osteoid matrix on inadequately mineralized cartilage
3. Disruption of the orderly replacement of cartilage by osteoid matrix, with enlargement and lateral expansion of the osteochondral junction
4. Microfractures and stresses of the inadequately mineralized, weak, poorly formed bone
5. Deformation of the skeleton due to the loss of structural rigidity of the developing bones 


Gross features
• The gross skeletal changes depend on the severity of the disease; its duration, & the stresses to which individual bones are subjected.
• During the nonambulatory stage of infancy, the head and chest sustain the greatest stresses. The softened occipital bones may become flattened. An excess of osteoid produces frontal bossing. Deformation of the chest results from overgrowth of cartilage or osteoid tissue at the costochondral junction, producing the "rachitic rosary." The weakened metaphyseal areas of the ribs are subject to the pull of the respiratory muscles and thus bend inward, creating anterior protrusion of the sternum (pigeon breast deformity). The pelvis may become deformed.
• When an ambulating child develops rickets, deformities are likely to affect the spine, pelvis, and long bones (e.g., tibia), causing, most notably, lumbar lordosis and bowing of the legs .
• In adults the lack of vitamin D deranges the normal bone remodeling that occurs throughout life. The newly formed osteoid matrix laid down by osteoblasts is inadequately mineralized, thus producing the excess of persistent osteoid that is characteristic of osteomalacia. Although the contours of the bone are not affected, the bone is weak and vulnerable to gross fractures or microfractures, which are most likely to affect vertebral bodies and femoral necks.

Microscopic features

• The unmineralized osteoid can be visualized as a thickened layer of matrix (which stains pink in hematoxylin and eosin preparations) arranged about the more basophilic, normally mineralized trabeculae.

CONGESTION

Congestion or hyperaemia means an increase in the content of blood in an organ. It may be :

A. Active - due to increased arterial flow to the organ with dilatation of micro vessels as in

  • Inflammation.
  • Increased metabolic activity.
  • Neurogenic blushing.

B. Passive - due to decreased venous drainage resulting in pooling of blood. There is always an associated element of oedema.

 LUNG ABSCESS  Lung abscess is a localised area of necrosis of lung tissue with suppuration.

 It is of 2 types:

 - Primary lung abscess that develops in an otherwise normal lung. The commonest cause is aspiration of infected material.

 - Secondary lung abscess that develops as a complication of some other disease of the lung or from another site

ETIOPATHOGENESIS.

 The microorganisms commonly isolated from the lungs in lung abscess are streptococci, staphylococci and various gram-negative organisms. These are introduced into the lungs from one of the following mechanisms:

 1.   Aspiration of infected foreign material.

 2. Preceding bacterial infection.

 3.  Bronchial obstruction.

 4. Septic embolism.

 5. Miscellaneous (i) Infection in pulmonary infarcts, (ii) Amoebic abscesses, (iii) Trauma to the lungs. (iv) Direct extension from a suppurative focus.

Abscesses may be of variable size from a few millimeters to large cavities, 5 to 6 cm in diameter. The cavity often contains exudate. An acute lung abscess is initially surrounded by acute pneumonia and has poorly-defined ragged wall. With passage of time, the abscess becomes chronic and develops fibrous wall.

Microscopic Examination

The characteristic feature is the destruction of lung parenchyma with suppurative exudate in the lung cavity. The cavity is initially surrounded by acute inflammation in the wall but later there is replacement by exudate of lymphocytes, plasma cells and macrophages. In more chronic cases, there is considerable fibroblastic proliferation forming a fibrocollagenic wall.

Explore by Exams