Talk to us?

General Pathology - NEETMDS- courses
NEET MDS Lessons
General Pathology

Hereditary spherocytosis.

Functionally normal cells which are destroyed .in spleen because of the structural abnormality. It is transmitted as an autosomal dominant trait 

Congenital hemolytic anemia due to genetically determined abnormal spectrin and ankyrin molecules, leading to defects in red blood cell membrane, causing spherical shape and lack of plasticity
Red blood cells become trapped within spleen and have less than usual 120 day lifespan
Splenic function is normal
Osmotic fragility: increased; basis for diagnostic testing 

Description

Firm, deep red tissue, thin capsule, no grossly identifiable malpighian follicles, 100-1000g
Peripheral blood images
Marked congestion in cords
Sinuses appear empty but actually contain ghost red blood cells
May have prominent endothelial lined sinuses, hemosiderin deposition, erythrophagocytosis

Miscellaneous Bone Tumors 

1. Ewing Sarcoma & Primitive Neuroectodermal Tumor (PNET) are primary malignant small round-cell tumors of bone and soft tissue. They are viewed as the same tumor because they share an identical chromosome translocation; they differ only in degree of differentiation. PNETs demonstrate neural differentiation whereas Ewing sarcomas are undifferentiated. After osteosarcomas, they are the second most common pediatric bone sarcomas. Most patients are 10 to 15 years old. The common chromosomal abnormality is a translocation that causes fusion of the EWS gene with a member of the ETS family of transcription factors. The resulting hybrid protein functions as an active transcription factor to stimulate cell proliferation. These translocations are of diagnostic importance since almost all patients with Ewing tumor have t(11;22).

Pathological features

• Ewing sarcoma and PNETs arise in the medullary cavity but eventually invade the cortex and periosteum to produce a soft tissue mass.
• The tumor is tan-white, frequently with foci of hemorrhage and necrosis.

Microscopic features

• There are sheets of uniform small, round cells that are slightly larger than lymphocytes with few mitoses and little intervening stroma.
• The cells have scant glycogen-rich cytoplasm.
• The presence of Homer-Wright rosettes (tumor cells circled about a central fibrillary space) indicates neural differentiation, and hence indicates by definition PNET. 

Ewing sarcoma and PNETs typically present as painful enlarging masses in the diaphyses of long tubular bones (especially the femur) and the pelvic flat bones. The tumor may be confused with osteomyelitis because of its association with systemic signs & symptoms of infection. X-rays show a destructive lytic tumor with infiltrative margins and extension into surrounding soft tissues. There is a characteristic periosteal reaction depositing bone in an onionskin fashion. 

2. Giant-Cell Tumor of Bone (GCT) is dominated by multinucleated osteoclast-type giant cells, hence the synonym osteoclastoma. GCT is benign but locally aggressive, usually arising in individuals in their 20s to 40s. Current opinion suggests that the giant cell component is likely a reactive macrophage population and the mononuclear cells are neoplastic. Tumors are large and red-brown with frequent cystic degeneration. They are composed of uniform oval mononuclear cells with frequent mitoses, with scattered osteoclast-type giant cells that may contain 30 or more nuclei.

The majority of GCTs arise in the epiphysis of long bones around the knee (distal femur and proximal tibia).
Radiographically, GCTs are large, purely lytic, and eccentric; the overlying cortex is frequently destroyed, producing a bulging soft tissue mass with a thin shell of reactive bone. Although GCTs are benign, roughly 50% recur after simple curettage; some malignant examples (5%) metastasize to the lungs 

Immunodeficiency

This may be :- 
- Congenital (Primary)
- Acquired (Secondary)

Features : Complete or near complete lack of T & B lymphoid tissue. Fatal early in life Even with marrow grafting, chances of graft versus host reaction is high.


T Cell Defects :

- Thymic dysplasia
- Digeorge’s syndrome
- Nazelof’s syndrome
- Ataxia teltngiectaisa
- Wiscott Aldrich’s syndrome

These  lessons show predominantly defective cell mediated immunity. But they may also show partial immunoglobulin defects cell mediated immunity. But they may also show partial immunoglobulin defects due to absence og T-B co-operation.

C. Humoral immunity defects.
Bruron type- aggammaglobulinaemia.
- Dysgammaglobulinaemias-variable immunodeficiency’s of one or more classes.

Acquired deficiency

A. Immuno suppression by :
- Irradiation.
- Corticoids.
- Anti metabolites.
- Anti lymphocyte serum.

B. Neaplasia  of lymphoid system :

- Hodgkin's and Non Hodgkin's lymphomas.
- Chronic lymphocytic leukaemia..
- Multime myeloma and other paraproteinaemias (normal immunoglobulins reduced in spite of hyperglobulinaemia).

c. excessive protein loss.
- Nephrotic Syndrome.
- Protein losing enteropathy.

 

 Staphylococcal aureus
 - cutaneous infections
  
 - furuncles (boils)
    - carbuncles (more complicated furuncle with multiple sinuses)
    - impetigo (often mixed with Streptococcus and has a more bullous appearance than crusted)
    - hidradenitis suppurative (abscess of apocrine glands→e.g., axilla)
    - nail bed (paronychial infection) 
    - postoperative wound or stitch abscess
    - postpartum breast abscesses 
 
toxin related skin rashes

 - infants and young children develop toxic epidermal necrolysis or Ritter's syndrome (scalded baby syndrome)→large, red areas of denuded skin and generalized bulla formation.
 - toxic shock syndrome (TSS) is due to a toxin producing strain of Staphylococcus aureus (bacteriophage induced) usually, but not exclusively in tampon wearing (hyperabsorbent type), menstruating women; 1-4 day prodrome of high fever, myalgias, arthralgias, mental confusion, diarrhea and on erythematous rash that occurs during or soon after menses; rash predominantly on hands and feet with eventual desquamation in 5-12 days. 

OEDEMA

 Excessive accumulation of fluid in the extra vascular compartment (intersttitial tissues). This includes ascites (peritoneal sac), hydrothorax (pleural cavity) hydropericardium (pericardial space) and anasarca (generalised)

Factors which tend to accumulate interstitial fluid are:

- Intravascular hydrostatic pressure

- Interstitial osmotic pressure.

- Defective lymphatic drainage.

- Increased capillary permeability.

Factors that draw fluid into circulation are:

- Tissue hydrostatic-pressure (tissue tension).

- Plasma osmotic pressure,

Oedema fluid can be of 2 types:

A. Exudate.

It is formed due to increased capillary permeability as in inflammation.

B. Transudate

Caused by alterations of hydrostatic and osmotic pressures.

 

Exudate

Transudate

Specific Gravity

>1.018

1.012

Protein Content

High

Low

Nature of Protein

All Plasma Protein

Albumin mostly

Spontaneous Clotting

High(Inflammatory Cells)

Low

Local Oedema

1. Inflammatory oedema. Mechanisms are.

- Increased capillary permeability.

- Increased vascular hydrostatic pressure.

- Increased tissue osmotic pressure.

2.Hypersensitivity reactions especially types I and III

3. Venous obstruction :

- Thrombosis.

- Pressure from outside as in pregnancy, tourniquets.

4. Lymphatic obstruction:

- Elephantiasis in fillariasis

- Malignancies (Peau de orange in breast cancer).

Generalized Oedema

1.         Cardiac oedema

Factors :Venous pressure increased.

2. Renal oedema

- Acute glomerulonephritis

- Nephrotic syndrome

3. Nutritional (hypoproteinaemic) oedema. it is seen in

- Starvation and Kwashiorkor

- Protein losing enteropathy

4.  Hepatic oedema (predominantly ascites)

Factors:

- Fall in plasma protein synthesis

- Raised regional lymphatic and portal venous pressure

5. Oedema due to adrenal corticoids

As in Cushing's Syndrome

Pulmonary oedema

- Left heart failure and mitral stenosis.

- Rapid flv infusion specially in a patient of heart failure.

Thalassaemia. Genetic based defect in synthesis of one of the normal chains.

Beta thalassaemia --->  reduced Hb A and increased HbF (α2, Y2) HBA2(α2)

Alpha thalassaemia  --->   reduced  Hb-A, Hb-A2 and Hb-F-with formation of Hb-H(β4) and Hb Barts (Y4).
Thalassaemia may manifest as trait or disease or with intermediate manifestation.

Features:
•    Microcytic hypochromic RBC is in iron deficjency.
•    Marked anisopoikilocytsis  with prominent target cells.
•    Reticulocytosis and nucleated RBC seen.
•    Mongoloid facies and X-ray findings characteristic of marrow hyperplasia
•    Decreased osmotic. fragility.
•    Increased marrow iron (important difference from iron deficiency anaemia).
•    Haemosiderosis, especially with repeated transfusions.

Diagnosis is by Hb electrophoresis and by Alkali denaturation test (for HbF).

Portal hypertension

 It is elevation of the portal venous pressure (normal 7 m.m Hg). 

 Causes:-
 1- Presinusoidal    
 2- Sinusoidal        
 3- Postsinusoidal
 
Presinusoidal:- 
  a. Massive splenomegaly and increased splenic blood flow.
  b. Portal vein obstruction by thrombosis or outside pressure.
  c. Portal venular obstruction at the portal tracts e.g. by fibrosis, granuloma or chronic hepatitis. 

Sinusoidal:-  
Cirrhosis due to perisinusoidal fibrosis

Postsinusoidal:-  
a.Alcoholic hepatitis leading to perivenular fibrosis.
b. Cirrhosis leading to interference with the blood flow and  to arterio -venous anastomosis resulting in increased venous blood pressure.
c. Veno -occlusive diseases of the liver caused by some drugs & plant toxins. It results in progressive fibrous occlusion of the hepatic venules and vein radicals.
d. Budd- Chiari syndrome: It is hepatic vein thrombosis. 30% of cases have no apparent cause. It produces portal hypertension and hepatomegaly. It is fatal if not treated. 
e. obstruction of major hepatic vein by tumors. 
f. Right sided heart failure and constrictive pericarditis 

Effects of portal hypertension: 

Ascitis
 

It is intraperitoneal accumulation of serous fluid which is a Transudate . It causes abdominal distension.  

Causes

a. Increased hydrostatic pressure` in the portal venous system. 
b. Decreased albumin synthesis in the liver…..decreased colloid osmotic pressure of plasma.
c. Sodium and water retension due to secondary hyperaldosteronism and ADH secretion. 
d. Leakage of hepatic lymph through the hepatic capsule due to hepatic vein obstruction.  

Splenomegaly:-   It results from chronic venous congestion.
- The spleen enlarged with capsular adhesions.
- It shows Gamma Gandi nodules.  - There may be hyperspelenism.  


Porto-Systemic venous anastomosis:-  Present in the following sites Esophageal variesis. Rupture of these vessels is the main cause of death.
Around the umbilicus  “Caput meduci”. Ano-rectal vessels. 
 

Explore by Exams