NEET MDS Lessons
General Pathology
Osteoporosis
is characterized by increased porosity of the skeleton resulting from reduced bone mass. The disorder may be localized to a certain bone (s), as in disuse osteoporosis of a limb, or generalized involving the entire skeleton. Generalized osteoporosis may be primary, or secondary
Primary generalized osteoporosis
• Postmenopausal
• Senile
Secondary generalized osteoporosis
A. Endocrine disorders
• Hyperparathyroidism
• Hypo or hyperthyroidism
• Others
B. Neoplasia
• Multiple myeloma
• Carcinomatosis
C. Gastrointestinal disorders
• Malnutrition & malabsorption
• Vit D & C deficiency
• Hepatic insufficiency
D. Drugs
• Corticosteroids
• Anticoagulants
• Chemotherapy
• Alcohol
E. Miscellaneous
• osteogenesis imperfecta
• immobilization
• pulmonary disease
Senile and postmenopausal osteoporosis are the most common forms. In the fourth decade in both sexes, bone resorption begins to overrun bone deposition. Such losses generally occur in areas containing abundant cancelloues bone such as the vertebrae & femoral neck. The postmenopausal state accelerates the rate of loss; that is why females are more susceptible to osteoporosis and its complications.
Gross features
• Because of bone loss, the bony trabeculae are thinner and more widely separated than usual. This leads to obvious porosity of otherwise spongy cancellous bones
Microscopic features
• There is thinning of the trabeculae and widening of Haversian canals.
• The mineral content of the thinned bone is normal, and thus there is no alteration in the ratio of minerals to protein matrix
Etiology & Pathogenesis
• Osteoporosis involves an imbalance of bone formation, bone resorption, & regulation of osteoclast activation. It occurs when the balance tilts in favor of resorption.
• Osteoclasts (as macrophages) bear receptors (called RANK receptors) that when stimulated activate the nuclear factor (NFκB) transcriptional pathway. RANK ligand synthesized by bone stromal cells and osteoblasts activates RANK. RANK activation converts macrophages into bone-crunching osteoclasts and is therefore a major stimulus for bone resorption.
• Osteoprotegerin (OPG) is a receptor secreted by osteoblasts and stromal cells, which can bind RANK ligand and by doing so makes the ligand unavailable to activate RANK, thus limiting osteoclast bone-resorbing activity.
• Dysregulation of RANK, RANK ligand, and OPG interactions seems to be a major contributor in the pathogenesis of osteoporosis. Such dysregulation can occur for a variety of reasons, including aging and estrogen deficiency.
• Influence of age: with increasing age, osteoblasts synthetic activity of bone matrix progressively diminished in the face of fully active osteoclasts.
• The hypoestrogenic effects: the decline in estrogen levels associated with menopause correlates with an annual decline of as much as 2% of cortical bone and 9% of cancellous bone. The hypoestrogenic effects are attributable in part to augmented cytokine production (especially interleukin-1 and TNF). These translate into increased RANK-RANK ligand activity and diminished OPG.
• Physical activity: reduced physical activity increases bone loss. This effect is obvious in an immobilized limb, but also occurs diffusely with decreased physical activity in older individuals.
• Genetic factors: these influence vitamin D receptors efficiency, calcium uptake, or PTH synthesis and responses.
• Calcium nutritional insufficiency: the majority of adolescent girls (but not boys) have insufficient dietary intake of calcium. As a result, they do not achieve the maximal peak bone mass, and are therefore likely to develop clinically significant osteoporosis at an earlier age.
• Secondary causes of osteoporosis: these include prolonged glucocorticoid therapy (increases bone resorption and reduce bone synthesis.)
The clinical outcome of osteoporosis depends on which bones are involved. Thoracic and lumbar vertebral fractures are extremely common, and produce loss of height and various deformities, including kyphoscoliosis that can compromise respiratory function. Pulmonary embolism and pneumonia are common complications of fractures of the femoral neck, pelvis, or spine.
Urinary tract infection
Most often caused by gram-negative, rod-shaped bacteria that are normal residents of the enteric tract, especially Escherichia coli.
Clinical manifestations:
frequent urination, dysuria, pyuria (increased PMNs), hematuria, and bacteriuria.
May lead to infection of the urinary bladder (cystitis) or kidney (pyelonephritis).
Herpes zoster, or shingles
- represents reactivation of a latent varicella-zoster infection.
- virus lies dormant in sensory dorsal root ganglia and when activated involves the distribution (dermatome) of the sensory nerve with a painful vesicular eruption.
- trigeminal verve distribution → Ramsay Hunt syndrome
- may indicate the presence of advanced neoplastic disease or be a complication of chemotherapy.
Microbiological examination
This is a method by which body fluids, excised tissue, etc. are examined by microscopical, cultural and serological techniques to identify micro-organisms Microbiological examination responsible for many diseases.
DIABETES MELLITUS
a group of metabolic disorders sharing the common underlying characteristic of hyperglycemia.
Diabetes is an important disease because
1. It is common (affects 7% of the population).
2. It increases the risk of atherosclerotic coronary artery and cerebrovascular diseases.
3. It is a leading cause of
a. Chronic renal failure
b. Adult-onset blindness
c. Non traumatic lower extremity amputations (due to gangrene)
Classification
Diabetes is divided into two broad classes:
1. Type1 diabetes (10%): characterized by an absolute deficiency of insulin secretion caused by pancreatic βcell destruction, usually as a result of an autoimmune attack.
2. Type2 diabetes (80%): caused by a combination of peripheral resistance to insulin action and an inadequate secretion of insulin from the pancreatic β cells in response to elevated blood glucose levels.
The long-term complications in kidneys, eyes, nerves, and blood vessels are the same in both types.
Pathogenesis
Type 1 diabetes is an autoimmune disease and as in all such diseases, genetic susceptibility and environmental influences play important roles in the pathogenesis. The islet destruction is caused primarily by T lymphocytes reacting against immunologic epitopes on the insulin hormone located within β-cell; this results in a reduction of β-cell mass. The reactive T cells include CD4+ T cells of the TH1 subset, which cause tissue injury by activating macrophages, and CD8+ cytotoxic T lymphocytes; these directly kill β cells and also secrete cytokines that activate further macrophages. The islets show cellular necrosis and lymphocytic infiltration (insulitis). Autoantibodies against a variety of β-cell antigens, including insulin are also detected in the blood and may also contribute to islet damage.
Type 2 Diabetes Mellitus: the pathogenesis remains unsettled. Environmental influences, such as inactive life style and dietary habits that eventuates in obesity, clearly have a role. Nevertheless, genetic factors are even more important than in type 1 diabetes. Among first-degree relatives with type 2 diabetes the risk of developing the disease is 20% to 40%, as compared with 5% in the general population.
The two metabolic defects that characterize type 2 diabetes are 1. A decreased ability of peripheral tissues to respond to insulin (insulin resistance) and 2. β-cell dysfunction manifested as inadequate insulin secretion in the face of hyperglycemia. In most cases, insulin resistance is the primary event and is followed by increasing degrees of β-cell dysfunction.
Morphology of Diabetes and Its Late Complications
The important morphologic changes are related to the many late systemic complications of diabetes and thus are likely to be found in arteries (macrovascular disease), basement membranes of small vessels (microangiopathy), kidneys (diabetic nephropathy), retina (retinopathy), and nerves (neuropathy). These changes are seen in both type 1 and type 2 diabetes.
The changes are divided into pancreatic & extrapancreatic
A. Pancreatic changes are inconstant and are more commonly associated with type 1 than with type 2 diabetes.
One or more of the following alterations may be present.
1. Reduction in the number and size of islets
2. Leukocytic infiltration of the islets (insulitis) principally byT lymphocytes.
3. Amyloid replacement of islets; which is seen in advanced stages
B. Extrapancreatic changes
1. Diabetic macrovascular disease is reflected as accelerated atherosclerosis affecting the aorta and other large and medium-sized arteries including the coronaries. Myocardial infarction is the most common cause of death in diabetics. Gangrene of the lower limbs due to advanced vascular disease, is about 100 times more common in diabetics than in the general population.
2. Hyaline arteriolosclerosis
is the vascular lesion associated with hypertension. It is both more prevalent and more severe in diabetics than in nondiabetics, but it is not specific for diabetes and may be seen in elderly nondiabetics without hypertension.
3. Diabetic microangiopathy
is one of the most consistent morphologic features of diabetes, which reflected morphologically as diffuse thickening of basement membranes. The thickening is most evident in the capillaries of the retina, renal glomeruli, and peripheral nerves. The thickened capillary basement membranes are associated with leakiness to plasma proteins. The microangiopathy underlies the development of diabetic nephropathy, retinopathy, and some forms of neuropathy.
4. Diabetic Nephropathy: renal failure is second only to myocardial infarction as a cause of death from diabetes.
Three lesions encountered are:
1. Glomerular lesions
2. Renal vascular lesions, principally arteriolosclerosis; and
3. Pyelonephritis, including necrotizing papillitis.
Glomerular lesions: these include
a. diffuse glomerular capillary basement membrane thickening
b. diffuse glomerular sclerosis : diffuse increase in mesangial matrix; always associated with the above.
c. nodular glomerulosclerosis (Kimmelstiel-Wilson lesion) refers to a rounded deposits of a laminated matrix situated in the periphery of the glomerulus
Pyelonephritis: both acute and chronic pyelonephritis are more common & more severe
Ocular Complications of Diabetes: Visual impairment up to total blindness may occur in long-standing diabetes. The ocular involvement may take the form of
a. retinopathy
b. cataract formation
c. glaucoma
In both forms of long-standing diabetes, cardiovascular events such as myocardial infarction, renal vascular insufficiency, and cerebrovascular accidents are the most common causes of mortality. Diabetic nephropathy is a leading cause of end-stage renal disease. By 20 years after diagnosis, more than 75% of type 1 diabetics and about 20% of type 2 diabetics with overt renal disease will develop end-stage renal disease, requiring dialysis or renal transplantation.
Diabetics are plagued by an enhanced susceptibility to infections of the skin, as well as to tuberculosis,
pneumonia, and pyelonephritis. Such infections cause the deaths of about 5% of diabetics.
Lupus erythematosus
- chronic discoid lupus is primarily limited to the skin, while SLE can involve the skin and other systems.
- pathogenesis: light and other external agents plus deposition of DNA (planted antigen) and immune complexes in the basement membrane.
Histology:
- basal cells along the dermal-epidermal junction and hair shafts (reason for alopecia) are vacuolated (liquefactive degeneration)
- thickening of lamina densa as a reaction to injury.
- immunofluorescent studies reveal a band of immunofluorescence (band test) in involved skin of chronic discoid lupus or involved/uninvolved skin of SLE.
- lymphocytic infiltrate at the dermal-epidermal junction and papillary dermis.
Hypoparathyroidism
Hypoparathyroidism is a condition of reduced or absent PTH secretion, resulting in hypocalcaemia and hyperphosphataemia. It is far less common than hyperparathyroidism.
The causes of hypoparathyroidism are:
- Removal or damage of the parathyroid glands during thyroidectomy—most common cause of hypoparathyroidism resulting from inadvertent damage or removal.
- Autoimmune parathyroid disease—usually occurs in patients who have another autoimmune endocrine disease, e.g. Addison’s disease (autoimmune endocrine syndrome type 1).
- Congenital deficiency (DiGeorge syndrome)— rare, congenital disorder caused by arrested development of the third and fourth branchial arches, resulting in an almost complete absence of the thymus and parathyroid gland.
The effects of hypoparathyroidism are:
- ↓ release of Ca2+ from bones.
- ↓ Ca2+ reabsorption but ↑ PO 43− re absorption by the kidneys
- ↓ 1-hydroxylation of 25-hydroxyvitamin D by kidney.
Most symptoms of hypoparathyroidism are those of hypocalcaemia:
- Tetany—muscular spasm provoked by lowered plasma Ca 2+
- Convulsions.
- Paraesthesiae.
- Psychiatric disturbances, e.g. depression, confusional state and even psychosis.
- Rarely—cataracts, parkinsonian-like movement disorders, alopecia, brittle nails.
Management is by treatment with large doses of oral vitamin D; the acute phase requires intravenous calcium and calcitriol (1,25-dihydroxycholecalciferol, i.e. activated vitamin D).