NEET MDS Lessons
General Pathology
HYPERTROPHY
Increase in the size of an organ or tissue due to increase in the size of its Constituent cells.
1. Skeletal muscle due to -exercise.
2. Cardiac muscle of:
- Left ventricle in:
o Hypertension.
o Aortic valvular lesion.
o Severe anaemia.
- Right ventricle in :
o Mitral stenosis
o Cor pulmonale
3. Smooth muscle of:
- GIT proximal to strictures.
- Uterus in pregnancy.
Glycogen storage diseases (glycogenoses)
1. Genetic transmission: autosomal recessive.
2. This group of diseases is characterized by a deficiency of a particular enzyme involved in either glycogen production or degradative pathways.
Diseases include:
on Gierke disease (type I)
(a) Deficient enzyme: glucose-6-phosphatase.
(b) Major organ affected by the buildup of glycogen: liver.
Pompe disease (type II)
(1) Deficient enzyme: α-glucosidase(acid maltase).
(2) Major organ affected by the buildup of glycogen: heart.
Cori disease (type III)
(1) Deficient enzyme: debranching enzyme (amylo-1,6-glucosidase).
(2) Organs affected by the buildup of glycogen: varies between the heart, liver, or skeletal muscle.
Brancher glycogenosis (type IV)
(1) Deficient enzyme: branching enzyme.
(2) Organs affected by the buildup of glycogen: liver, heart, skeletal muscle, and brain.
McArdle syndrome (type V)
(1) Deficient enzyme: muscle phosphorylase.
(2) Major organ affected by the buildup of glycogen: skeletal muscle.
German measles (rubella)
- sometimes called "three day measles".
- incubation 14-21 days; infectious 7 days before the rash and 14 days after the onset of the rash.
- in adults, rubella present with fever, headache, and painful postauricular Lymphadenopathy 1 to 2 days prior to the onset of rash, while in children, the rash is usually the first sign.
- rash (vasculitis) consists of tiny red to pink macules (not raised) that begins on the head and spreads downwards and disappears over the ensuing 1-3 days; rash tends to become confluent.
- 1/3rd of young women develop arthritis due to immune-complexes.
- splenomegaly (50%)
THROMBOSIS
Pathogenesis (called Virchow's triad):
1. Endothelial* Injury ( Heart, Arteries)
2. Stasis
3. Blood Hypercoagulability
- Endothelial cells are special type of cells that cover the inside surface of blood vessels and heart.
CONTRIBUTION OF ENDOTHELIAL CELLS TO COAGULATION
Intact endothelial cells maintain liquid blood flow by:
1- inhibiting platelet adherence
2- preventing coagulation factor activation
3- lysing blood clots that may form.
Endothelial cells can be stimulated by direct injury or by various cytokines that are produced during inflammation.
Endothelial injury results in:
1- expression of procoagulant proteins (tissue factor and vWF)→ local thrombus formation.
2- exposure of underlying vWF and basement membrane collagen → platelet aggregation and thrombus formation.
RESPONSE OF VASCULAR WALL CELLS TO INJURY( PATHOLOGIC EFFECT OF VASCULAR HEALING)
Injury to the vessel wall results in a healing response, involving:
- Intimal expansion (proliferating SMCs and newly synthesized ECM). This involves signals from ECs, platelets, and macrophages; and mediators derived from coagulation and complement cascades.
- luminal stenosis & blockage of vascular flow
Causes of Endothelial injury
1. Valvulitis
2. MI
3. Atherosclerosis
4. Traumatic or inflammatory conditions
5. Increased Blood Pressure
6. Endotoxins
7. Hypercholesterolemia
8. Radiation
9. Smoking
Stasis
- Stasis is a major factor in venous thrombi
- Normal blood flow is laminar (platelets flow centrally in the vessel lumen, separated from the endothelium by a slower moving clear zone of
plasma)
- Stasis and turbulence cause the followings:
Disuption of normal blood flow
prevent dilution of activated clotting factor
retard inflow of clotting factor inhibitor
promote endothelial cell injury
Causes of Stasis
1. Atherosclerosis
2. Aneurysms
3. Myocardial Infarction ( Non-cotractile fibers)
4. Mitral valve stenosis (atrial dilation)
5. Hyper viscosity syndromes (PCV and Sickle Cell anemia)
Hypercoagulability
A. Genetic (primary):
- mutations in the factor V gene and the prothrombin gene are the most common
B. Acquired (secondary):
- multifactorial and more complicated
- causes include: Immobilization, MI, AF, surgery, fracture, burns, Cancer, Prosthetic cardiac valves
MORPHOLOGY OF THROMBI
Can develop anywhere in the CVS (e.g., in cardiac chambers, valves, arteries, veins, or capillaries).
Arterial or cardiac thrombi→ begin at sites of endothelial injury; and are usually superimposed on an atherosclerotic plaque.
Venous thrombi → occur at sites of stasis. Most commonly the veins of the lower extremities (90%)
Thrombi are focally attached to the underlying vascular surface; arterial and venous thrombi both tend to propagate toward the heart.
→ The propagating portion of a thrombus is poorly attached → fragmentation and embolus formation
LINES OF ZAHN
Thrombi can have grossly (and microscopically) apparent laminations called lines of Zahn; these represent pale platelet and fibrin layers alternating with darker erythrocyte-rich layers.
Such lines are significant in that they represent thrombosis of flowing blood.
Mural thrombi = Thrombi occurring in heart chambers or in the aortic lumen.
Causes: -Abnormal myocardial contraction (e.g. arrhythmias, dilated cardiomyopathy, or MI) -endomyocardial injury (e.g. myocarditis, catheter trauma)
Vegetations ->Thrombi on heart valves
1- Bacterial or fungal blood-borne infections - (infective endocarditis,).
2- Non-bacterial thrombotic endocarditis occur on sterile valves.
Fate of thrombi
1. Propagation → Thrombi accumulate additional platelets and fibrin, eventually causing vessel obstruction
2. Embolization → Thrombi dislodge or fragment and are transported elsewhere in the vasculature
3. Dissolution → Thrombi are removed by fibrinolytic activity (Usually in recent thrombi)
4. Organization and recanalization → Thrombi induce inflammation and fibrosis. - recanalization (re-establishing some degree of flow) - Organization = ingrowth of endothelial cells, smooth cells and fibroblasts into the fibrin rich thrombus.
5. Superimposed infection (Mycotic aneurysm)
Venous thrombi → most common in veins of the legs
a. Superficial: e.g. Saphenous veins. - can cause local congestion, swelling, pain, and tenderness along the course of the involved vein, but they rarely embolize
a. Deep: e.g. Popliteal, Femoral and iliac vein. - more serious because they may embolize - can occur with stasis or hypercoagulable states
Chronic myelocytic leukaemia
Commoner in adults (except the Juvenile type)
Features:
- Anaemia.
- Massive splenomegaly
- Bleeding tendencies.
- Sternal tenderness.
- Gout and skin manifestations
Blood picture:
- Marked leucocytosis of 50,-1000,000 cu.mm, often more
- Immature cells of the series with 20-50 % myelocytes
- Blasts form upto 5-10% of cells
- Basophils may be increased
- Leuocyte alkaline phosphate is reduced
- Anaemia with reticutosis and nucleated RBC
- Platelets initially high levels may fall later if patient goes into blast crisis.
Bone marrow:
- Hyper cellular marrow.
- Myeloid hyperplasia with more of immature forms, persominatly myelocytes.
Chromosomal finding. Philadelphia (Phi) chromosome is positive adult cases .It is a short chromosome due to deletion of long arm of chromosome 22 (translocated to no.9),
Juvenile type :- This is Ph1 negative has more nodal enlargement and has a worse prognosis, with a greater proneness to infections and haemorrhage
Autoimmune Diseases
These are a group of disease where antibodies (or CMI) are produced against self antigens, causing disease process.
Normally one's immune competent cells do not react against one's own tissues. This is due to self tolerance acquired during embryogenesis. Any antigen encountered at that stage is recognized as self and the clone of cells capable of forming the corresponding antibody is suppressed.
Mechanism of autoimmunity
(1) Alteration of antigen
-Physicochemical denaturation by UV light, drugs etc. e.g. SLE.
- Native protein may turn antigenic when a foreign hapten combines with it, e.g. Haemolytic anemia with Alpha methyl dopa.
(2) Cross reaction: Antibody produced against foreign antigen may cross react with native protein because of partial similarity e.g. Rheumatic fever.
(3) Exposure of sequestered antigens: Antigens not normally exposed to immune competent cells are not accepted as self as tolerance has not been developed to them. e.g. thyroglobulin, lens protein, sperms.
(4) Breakdown of tolerance :
Emergence of forbidden clones (due to neoplasia of immune system as in lymphomas and lymphocytic leukaemia)
Loss of suppressor T cells as in old age and CMI defects
Autoimmunity may be
Organ specific.
Non organ specific (multisystemic)
I. Organ specific
(1) Hemolytic anaemia:
Warm or cold antibodies (active at 37° C or at colder temperature)
They may lyse the RBC by complement activation or coat them and make them vulnerable to phagocytosis
(2) Hashimoto's thyroiditis:
Antibodies to thyroglobulin and microsomal antigens.
Cell mediated immunity.
Leads to chronic. destructive thyroiditis.
(3) Pernicious anemia
Antibodies to gastric parietal cells and to intrinsic factor.
2. Non organ specific.
Lesions are seen in more than one system but principally affect blood vessels and
connective tissue (collagen diseases).
1. Systemic lupus erythematosus (SLE). Antibodies to varied antigens are seen. Hence it is possible that there is abnormal reactivity of the immune system in self recognition.
Antibodies have been demonstrated against:
Nuclear material (antinuclear I antibodies) including DNA. nucleoprotein etc. Anti nuclear antibodies are demonstrated by LE cell test.
Cytoplasmic organelles- mitochondria, rib osomes, Iysosomes.
Blood constituents like RBC, WBC. platelets, coagulation factors.
Mechanism. Immune complexes of body proteins and auto antibodies deposit in various
organs and cause damage as in type III hypersensitivity
Organs involved
Skin- basal dissolution and collagen degeneration with fibrinoid vasculitis.
Heart- pancarditis.
Kidneys- glomerulonephritis of focal, diffuse or membranous type
Joints- arthritis.
Spleen- perisplenitis and vascular thickening (onion skin).
Lymph nodes- focal necrosis and follicular hyperplasia.
Vasculitis in other organs like liver, central or peripheral nervous system etc,
2. Polyarteritis nodosa. Remittant .disseminated necrotising vasculitis of small and medium sized arteries
Mechanism :- Not definitely known. Proposed immune reaction to exogenous or auto antigens
Lesion : Focal panarteritis- a segment of vessel is involved. There is fibrinoid necrosis
with initially acute and later chronic inflammatory cells. This may result in haemorrhage
and aneurysm.
Organs involved. No organ or tissue is exempt but commonly involved organs are :
- Kidneys.
- Heart.
- Spleen.
- GIT
3. Rheumatoid arthritis. A disease primarily of females in young adult life.
Antibodies
- Rheumatoid factor (An IgM antibody to self IgG)
- Antinuclear antibodies in 20% patients.
Lesions
- Arthritis which may progress on to a crippling deformity.
- Arteritis in various organs- heart, GIT, muscles.
- Pleuritis and fibrosing alveolitis.
- Amyloidosis is an important complication.
4. Sjogren's Syndrome. This is constituted by
- Kerato conjunctivitis sicca
-Xerostomia
-Rheumatoid arthritis.
Antibodies
- Rheumatoid factor
- Antinuclear factors (70%).
- Other antibodies like antithyroid, complement fixing Ab etc
- Functional defects in lymphocytes. There is a higher incidence of lymphoma
5. Scleroderma (Progressive systemic sclerosis)
Inflammation and progressive sclerosis of connective tissue of skin and viscera.
Antibodies
- Antinuclear antibodies.
- Rheumatoid factor. .
- Defect is cell mediated.
lesions
Skin- depigmentation, sclerotic atrophy followed by cakinosis-claw fingers and mask face.
Joints-synovitis with fibrosis
Muscles- myositis.
GIT- diffuse fibrous replacement of muscularis resulting in hypomotility and malabsorption
Kidneys changes as in SLE and necrotising vasculitis.
Lungs – fibrosing alveolitis.
Vasculitis in any organ or tissue.
6.Wegener’s granulomatosis. A complex of:
Necrotising lesions in upper respiratory tract.
Disseminated necrotising vasculitis.
Focal or diffuse glomerulitis.
Mechanism. Not known. It is classed with autoimmune diseases because of the vasculitis resembling other immune based disorders.
Cryptococcosis
An infection acquired by inhalation of soil contaminated with the encapsulated yeast Cryptococcus neoformans, which may cause a self-limited pulmonary infection or disseminate, especially to the meninges, but sometimes to the skin, bones, viscera, or other sites.
Cryptococcosis is a defining opportunistic infection for AIDS, although patients with Hodgkin's or other lymphomas or sarcoidosis or those receiving long-term corticosteroid therapy are also at increased risk.
AIDS-associated cryptococcal infection may present with severe, progressive pneumonia with acute dyspnea and an x-ray pattern suggestive of Pneumocystis infection.
Primary lesions in the lungs are usually asymptomatic and self-limited
Pneumonia usually causes cough and other nonspecific respiratory symptoms. Rarely, pyelonephritis occurs with renal papillary necrosis development.
Most symptoms of cryptococcal meningitis are attributable to brain swelling and are usually nonspecific, including headache, blurred vision, confusion, depression, agitation, or other behavioral changes. Except for ocular or facial palsies, focal signs are rare until relatively late in the course of infections. Blindness may develop due to brain swelling or direct involvement of the optic tracts. Fever is usually low-grade and frequently absent.