Talk to us?

General Pathology - NEETMDS- courses
NEET MDS Lessons
General Pathology

EMBOLISM 

An embolus is a detached intravascular solid, liquid, or gaseous mass that is carried by the blood to a site distant from its point of origin

99% due to dislodged thrombus

Types: 
1. Thrombo-embolism 
2. Fat embolism 
3. Air embolism 
4. Nitrogen embolism

 Emboli result in partial or complete vascular occlusion. 

 The consequences of thromboembolism include ischemic necrosis (infarction) of downstream tissue

PULMONARY THROMBOEMBOLISM
- 95% originate from deep veins of L.L

Special variants: - Saddle embolus: at bifurcation of Pulmonary artery

Paradoxical embolus: Passage of an embolus from venous to systemic circulation through IAD, IVD

CLINICAL CONSEQUENCE OF PULMONARY THROMBOEMBOLISM :

Most pulmonary emboli (60% to 80%) are clinically silent because they are small 

a. Organization: 60 – 80 % 
b. Sudden death, Right ventricle failure, CV collapse when more than 60 % of pulmonary vessels are obstructed. 
c. Pulmonary hemorrhage: obstruction of medium sized arteries. 
d. Pulmonary Hypertension and right ventricular failure due to multiple emboli over a long time.

Systemic thromboembolism

Emboli traveling within the arterial circulation 
80% due to intracardiac mural thrombi
2/3  Lt. ventricular failure

 The major targets are: 
 
 1. Lower limbs 75% 
 2. Brain 10% 
 3. Intestines 
 4. Kidneys 
 5. Spleen

Fat embolism 

Causes 
1. Skeletal injury (fractures of long bones ) 
2. Adipose tissue Injury

Mechanical obstruction is exacerbated by free fatty acid release from the fat globules, causing local toxic injury to endothelium. - In skeletal injury, fat embolism occurs in 90% of cases, but only 10% or less have clinical findings


 Fat embolism syndrome is characterized by 
 
 A. Pulmonary Insufficiency 
 B. Neurologic symptoms 
 C. Anemia 
 D. Thrombocytopenia 
 E. Death in 10% of the case 
 
 Symptoms appears 1-3 days after injury
 
 Tachypnea, Dyspnea, Tachycardia and Neurological symptoms
 
Air Embolism 

causes: 1. Obstetric procedures 
2. Chest wall injury 
3. Decompression sickness: in Scuba and deep-sea divers ((nitrogen )) 

 More then 100ml of air is required to produce clinical effect. 
 
 Clinical consequence
 1. Painful joints: due to rapid formation of gas bubbles within Sk. Muscles and supporting tissues. 
 2. Focal ischemia in brain and heart 
 3. Lung edema, Hemorrhage, atelectasis, emphysema, which all lead to Respiratory distress. (chokes) 
 4. caisson disease: gas emboli in the bones leads to multiple foci of ischemic necrosis, usually the heads of the femurs, tibias, and humeri
 
 Amniotic fluid embolism 
 - Mortality Rate = 20%-40% 
 - Very rare complication of labor 
 
 - due to infusion of amniotic fluid into maternal circulation via tears in placental membranes and rupture of uterine veins. 
 - sudden severe dyspnea, cyanosis, and hypotensive shock, followed by seizures, DIC and coma 
 
 - Findings: Squamous cells, languo hair, fat, mucin …..etc within the pulmonary microcirculation

Osteoporosis
 
is characterized by increased porosity of the skeleton resulting from reduced bone mass. The disorder may be localized to a certain bone (s), as in disuse osteoporosis of a limb, or generalized involving the entire skeleton. Generalized osteoporosis may be primary, or secondary


Primary generalized osteoporosis
• Postmenopausal
• Senile
Secondary generalized osteoporosis

A. Endocrine disorders
• Hyperparathyroidism
• Hypo or hyperthyroidism
• Others

B. Neoplasia
• Multiple myeloma
• Carcinomatosis 

C. Gastrointestinal disorders
• Malnutrition & malabsorption
• Vit D & C deficiency
• Hepatic insufficiency 

D. Drugs
• Corticosteroids
• Anticoagulants
• Chemotherapy
• Alcohol 

E. Miscellaneous
• osteogenesis imperfecta
• immobilization
• pulmonary disease 

Senile and postmenopausal osteoporosis are the most common forms. In the fourth decade in both sexes, bone resorption begins to overrun bone deposition. Such losses generally occur in areas containing abundant cancelloues bone such as the vertebrae & femoral neck. The postmenopausal state accelerates the rate of loss; that is why females are more susceptible to osteoporosis and its complications. 

Gross features
• Because of bone loss, the bony trabeculae are thinner and more widely separated than usual. This leads to obvious porosity of otherwise spongy cancellous bones

Microscopic features
• There is thinning of the trabeculae and widening of Haversian canals.
• The mineral content of the thinned bone is normal, and thus there is no alteration in the ratio of minerals to protein matrix

Etiology & Pathogenesis

• Osteoporosis involves an imbalance of bone formation, bone resorption, & regulation of osteoclast activation. It occurs when the balance tilts in favor of resorption.
• Osteoclasts (as macrophages) bear receptors (called RANK receptors) that when stimulated activate the nuclear factor (NFκB) transcriptional pathway. RANK ligand synthesized by bone stromal cells and osteoblasts activates RANK. RANK activation converts macrophages into bone-crunching osteoclasts and is therefore a major stimulus for bone resorption.
• Osteoprotegerin (OPG) is a receptor secreted by osteoblasts and stromal cells, which can bind RANK ligand and by doing so makes the ligand unavailable to activate RANK, thus limiting osteoclast bone-resorbing activity.
• Dysregulation of RANK, RANK ligand, and OPG interactions seems to be a major contributor in the pathogenesis of osteoporosis. Such dysregulation can occur for a variety of reasons, including aging and estrogen deficiency.
• Influence of age: with increasing age, osteoblasts synthetic activity of bone matrix progressively diminished in the face of fully active osteoclasts.
• The hypoestrogenic effects: the decline in estrogen levels associated with menopause correlates with an annual decline of as much as 2% of cortical bone and 9% of cancellous bone. The hypoestrogenic effects are attributable in part to augmented cytokine production (especially interleukin-1 and TNF). These translate into increased RANK-RANK ligand activity and diminished OPG.
• Physical activity: reduced physical activity increases bone loss. This effect is obvious in an immobilized limb, but also occurs diffusely with decreased physical activity in older individuals.
• Genetic factors: these influence vitamin D receptors efficiency, calcium uptake, or PTH synthesis and responses.
• Calcium nutritional insufficiency: the majority of adolescent girls (but not boys) have insufficient dietary intake of calcium. As a result, they do not achieve the maximal peak bone mass, and are therefore likely to develop clinically significant osteoporosis at an earlier age.
• Secondary causes of osteoporosis: these include prolonged glucocorticoid therapy (increases bone resorption and reduce bone synthesis.)
The clinical outcome of osteoporosis depends on which bones are involved. Thoracic and lumbar vertebral fractures are extremely common, and produce loss of height and various deformities, including kyphoscoliosis that can compromise respiratory function. Pulmonary embolism and pneumonia are common complications of fractures of the femoral neck, pelvis, or spine. 

DIPHTHERIA

An acute, contagious disease caused by Corynebacterium diphtheriae, characterized by the formation of a fibrinous pseudomembrane, usually on the respiratory mucosa, and by myocardial and neural tissue damage secondary to an exotoxin.

Cutaneous diphtheria (infection of the skin) can occur when any disruption of the integument is colonized by C. diphtheriae. Lacerations, abrasions, ulcers, burns, and other wounds are potential reservoirs of the organism. Skin carriage of C. diphtheriae is also a silent reservoir of infection.

Pathology

C. diphtheriae may produce exotoxins lethal to the adjacent host cells. Occasionally, the primary site is the skin or mucosa elsewhere. The exotoxin, carried by the blood, also damages cells in distant organs, creating pathologic lesions in the respiratory passages, oropharynx, myocardium, nervous system, and kidneys.

 

The myocardium may show fatty degeneration or fibrosis. Degenerative changes in cranial or peripheral nerves occur chiefly in the motor fibers

In severe cases, anterior horn cells and anterior and posterior nerve roots may show damage proportional to the duration of infection before antitoxin is given. The kidneys may show a reversible interstitial nephritis with extensive cellular infiltration.

The diphtheria bacillus first destroys a layer of superficial epithelium, usually in patches, and the resulting exudate coagulates to form a grayish pseudomembrane containing bacteria, fibrin, leukocytes, and necrotic epithelial cells. However, the areas of bacterial multiplication and toxin absorption are wider and deeper than indicated by the size of the membrane formed in the wake of the spreading infection.

HAEMORRHAGIC DISORDERS

Normal homeostasis depends on

 -Capillary integrity and tissue support.

- Platelets; number and function

(a) For integrity of capillary endothelium and platelet plug by adhesion and aggregation

(b) Vasoactive substances for vasoconstriction

(c) Platelet factor for coagulation.

(d) clot retraction.

- Fibrinolytic system(mainly Plasmin) : which keeps the coagulation system in check.

Coagulation disorders

These may be factors :

Deficiency .of factors

  • Genetic.
  • Vitamin K deficiency.
  • Liver disease.
  • Secondary to disseminated intravascular coagulation.or defibrinatian

Overactive fibrinolytic system.

Inhibitors of  the factors (immune, acquired).

Anticoagulant therapy as in myocardial infarction.

Haemophilia. Genetic disease transmitted as X linked recessive trait. Common in Europe. Defect in fcatorVII   Haemophilia A .or in fact .or IX-Haemaphilia B (rarer).

Features:

  • May manifest in infancy or later.
  • Severity depends  on degree of deficiency.
  • Persistant wound bleeding.
  • Easy Bruising with Hematoma formation

Nose bleed , arthrosis, abdominal pain with fever and leukocytosis

Prognosis is good with prevention of trauma and-transfusion of Fresh blood or fTesh plasma except for danger of developing immune inhibitors.

Von Willebrand's disease. Capillary fragility and decreased factor VIII (due to deficient stimulatory factor). It is transmitted in an autosomal dominant manner both. Sexes affected equally

Vitamin K  Deficiency. Vitamin K is needed for synthesis of factor II,VII,IX and X.

Deficiency maybe due to:

Obstructive jaundice.

Steatorrhoea.

Gut sterilisation by antibiotics.

Liver disease results in :

Deficient synthesis of factor I II, V, Vll, IX and X  Incseased fibrinolysis (as liver is the site of detoxification of activators ).

Defibrination syndrome. occurs when factors are depleted due to disseminated .intravascular coagulation (DIC). It is initiated by endothelial damage or tissue factor entering the circulation.

Causes

Obstetric accidents, especially amniotic fluid embolism. Septicaemia. .

Hypersensitivity reactions.

Disseminated malignancy.

Snake bite.

Vascular defects : (Non thrombocytopenic purpura).

Acquired :

Simple purpura a seen in women. It is probably endocrinal

Senile parpura in old people due to reduced tissue support to vessels

Allergic or toxic damage to endothelium due to  Infections like Typhoid Septicemia

Col!agen diseases.

Scurvy

Uraemia damage to  endothelium (platelet defects).

Drugs like aspirin. tranquillisers, Streptomvcin pencillin etc.

Henoc schonlien purpura Widespeard vasculitis due to hypersensitivity to bacteria or foodstuff

It manifests as :

Pulrpurric rashes.

Arthralgia.

Abdominal pain.

Nephritis and haematuria.

Hereditary :

(a) Haemhoragic telangieclasia. Spider like tortous vessels which bleed easily. There are disseminated lesions in skin, mucosa and viscera.

(b) Hereditary capillary fragilily similar to the vascular component of von Willbrand’s disease

.(c) Ehler Danlos Syndrome which is a connective tissue defect with skin, vascular and joint manifestations.

Platelet defects

These may be :

(I) Qualitative thromboasthenia and thrombocytopathy.

(2) Thrombocytopenia :Reduction in number.

(a) Primary or idiopathic thrombocytopenic purpura.

(b) Secondary to :

(i) Drugs especially sedormid

(ii) Leukaemias

(iii) Aplastic-anaemia.

Idiopathic thrombocytopenic purpura (ITP). Commoner in young females.

Manifests as :

Acute self limiting type.

Chronic recurring type.

Features:

(i) Spontaneous bleeding and easy bruisability

(ii)Skin (petechiae), mucus membrane (epistaxis) lesions and sometimes visceral lesions involving any organ.

Thrombocytopenia with abnormal forms of platelets.

Marrow shows increased megakaryocytes with immature forms, vacuolation, and lack of platelet budding.

Pathogenesis:

hypersensitivity to infective agent in acute type.

Plasma thrombocytopenic factor ( Antibody in nature) in chronic type

Pulmonary Hypertension 

Sustained elevation of mean pulmonary arterial pressure.

Pathogenesis 
Elevated pressure, through endothelial cell dysfunction, produces structural changes in the pulmonary vasculature. These changes ultimately decrease pulmonary blood flow and stress the heart to the point of failure. Based on etiology, pulmonary hypertension is divided into two categories.

Primary (idiopathic): The cause is unknown.
Secondary: The hypertension is secondary to a variety of conditions which increase pulmonary blood flow or increase resistance to blood flow. Example: Interstitial fibrosis.
Pathology 
The changes involve large and small pulmonary blood vessels and range from mild to severe. The major changes include atherosclerosis, striking medial hypertrophy and intimal fibrosis of small arteries and arterioles, and plexogenic arteriopathy. Refer to Figure 15-7 in your textbook.

Pathophysiology 
Dyspnea and fatigue eventually give way to irreversible respiratory insufficiency, cyanosis and cor pulmonale.

ESOPHAGUS Pathology

Congenital malformations 
1. A tracheoesophageal fistula (the most prevalent esophageal anomaly) occurs most commonly as an upper esophageal blind pouch with a fistula between the lower segment of the esophagus and the trachea. It is associated with hydramnios, congenital heart disease, and other gastrointestinal malformation. 

2. Esophageal atresia is associated with VATER syndrome (vertebra1 defects, anal atresia, tracheoesophageal fistula, and renal dysplasia)

3. Stenosis refers to a narrowed esophagus with a small lumen.  lt may be congenital or acquired, e.g., through trauma or inflammation. 

Inflammatory disorders 

Esophagitis 

most often involves the lower half of the esophagus.  Caused by the reflux of gastric contents (juices) into the lower esophagus. One of the most common GI disorders.

Clinical features. 

Patients experience substernal burning  associated with regurgitation, mild anemia, dysphagia,  hematemesis, and melena. Esophagitis may predispose to esophageal cancer. 

Etiology

- Reflux esophagitis is due to an incompetent lower esophageal sphincter that permits reflux of gastric juice into the lower esophagus. 
- Irritants such as citric acid, hot liquids, alcohol, smoking, corrosive chemicals, and certain drugs, such as tetracycline, may provoke inflammation. 
- Infectious etiologies include herpes, CMV, and C. albicans. The immunocompromised host is particularly susceptible to infectious esophagitis. 
Although chronic or severe reflux disease is uncommon, consequences of these conditions can lead to Barrett’s esophagus, development of a stricture, or hemorrhage.

Pathology

-Grossly, there is hyperemia, edema, inflammation, and superficial necrosis. 

Complications include ulceration, bleeding, stenosis, and squamous carcinoma. 


Treatment: diet control, antacids, and medications that decrease the production of gastric acid (e.g., H blockers).


Barrett's esophagus, 

gastric or intestinal columnar epithelium replaces normal squamous epithelium in response to  chronic reflux.- A complication of chronic gastroesophageal reflux disease.
- Histologic findings include the replacement of squamous epithelium with metaplastic columnar epithelium.
- Complications include increased incidence of esophageal adenocarcinoma, stricture formation, or hemorrhage (ulceration).

 Motor disorders. 

Normal motor function requires effective peristalsis and relaxation of the lower esophageal sphincter. 

Achalasia is a lack of relaxation of the lower esophageal sphincter (LES), which may be associated with aperistalsis of the esophagus and increased basal tone of the LES. 

Clinical features. Achalasia occurs most commonly between the ages of 30 and 50. Typical symptoms are dysphagia, regurgitation, aspiration, and chest pain. The lack of motility promotes stagnation and predisposes to carcinoma. 

Hiatal hernia is the herniation of the abdominal esophagus, the stomach, or both, through the esophageal hiatus in the  diaphragm.

Scleroderma is a collagen vascular disease, seen primarily in women, that causes subcutaneous fibrosis and widespread  degenerative changes. (A mild variant is known as CREST syndrome which stands for calcinosis. raynaud's phenomenon , esophageal dysfunction, sclerodactyly and telengectseia. esophagus is the most frequently involved region of the gastrointestinal tract.

Clinical features are mainly dysphagia and heartburn due to reflux oesophagitis caused by aperlistalsis and incompetent LES. 


Rings and webs 

1. Webs are mucosal folds in the upper esophagus above the aortic arch. 
2. Schatzki rings are mucosal rings at the squamocolumnarjunction below the aortic arch.
3. Plummer Vinson Syndrome consist of triad of dysphagia, atrophic glossitis, and anemia. Webs are found in the upper esophagus. The syndrome is associated specifically with iron deficiency anemia and sometimes hypochlorhydria. Patients are at increased risk for carcinoma of the pharynx or esophagus. 

Mallory-Weiss syndrome
Mallory-Weiss tears refers to small mucosal tears at the gastroesophageal junction secondary to recurrent forceful vomiting. The tears occur along the long axis an result in hematemesis (sometimes massive).

- Characterized by lacerations (tears) in the esophagus.
- Most commonly occurs from vomiting (alcoholics).
- A related condition, known as Boerhaave syndrome, occurs when the esophagus ruptures, causing massive upper GI hemorrhage.

Esophageal varices
- The formation of varices (collateral channels) occurs from portal hypertension.
Causes of portal hypertension include blockage of the portal vein or liver disease (cirrhosis).
- Rupture of esophageal varices results in massive hemorrhage into the esophagus and hematemesis.
- Common in patients with liver cirrhosis.

Diverticula 
are sac-like protrusions of one or more layers of  pharyngeal or esophageal wall. 

Tumors 
- Benign tumors are rare. 
- Carcinoma of the esophagus most commonly occurs after 50 and has a male:female ratio of 4.1. 

Etiology: alcohal ingestion, smoking, nitrosamines in food, achalasia , web ring, Barrettes esophagus, and deficiencies of vitamins A and C , riboflavin, and some trace minerals

Clinical features include dysphagia (first to solids), retrosternal pain, anorexia, weight loss, melena, and symptoms secondary to metastases. 

Pathology 

- 50% occur in the middle third of the esophagus, 30% in the lower third, and 20% in the upper third. Most esophageal cancers are squamous cell carcinomas. 
Adenocarcinomas arise mostly out of Barrett's esophagus.

Prognosis

is poor. Fewer than 10% of patients survive 5 years, usually because diagnosis is made at a late stage. The  most common sites of metastasis are the liver and lung. The combination of cigarette smoking and alcohol is particularly causative for esophageal cancer (over l00%  risk compared to nondrinkers/nonsmokers). 

STOMACH 
Congenital malformations

1. Pyloric stenosis 

Clinical features. Projectile vomiting 3-4 weeks after birth associated with a palpable "olive" mass in the epigastric region is observed. 
Pathology shows hypertrophy of the muscularis of the pylorus and failure to relax. 

2. Diaphragmatic hernias are due to weakness in or absence of parts of the diaphragm, allowing herniation of the abdominal contents into the thorax. 

Inflammation 

1. Acute gastritis (erosive)

Etiology. Alcohol, aspirin and other NSAIDs, smoking,  shock, steroids, and uremia may all cause disruption of the mucosal barrier, leading to inflammation. 
Clinical features. Patients experience heartburn, epigastric pain, nausea, vomiting, hematemesis, and even melena. 

2. Chronic gastritis (nonerosive) may lead to atrophic mucosa with lymphocytic infiltration. 

Types 

(1) Fundal (Type A) gastritis is often autoimmune in origin.  It is the type associated with pernicious anemia and, therefore, achlorhydria and intrinsic factor deficiency. 
(2) Antral (Type B) gastritis is most commonly caused by Helicobacter pylori and is the most common form of chronic gastritis in the U.S. H. pylori is also responsible for proximal duodenitis in regions of gastric metaplasia.

Clinical features. The patient may be asymptomatic or suffer epigastric pain, nausea, vomiting, and bleeding. Gastritis may predispose to peptic ulcer disease, probably related to  H. pylori infection.

3. Peptic ulcers

Peptic ulcers are usually chronic, isolated ulcers observed in  areas bathed by pepsin and HCI; they are the result of mucosal breakdown

Common locations are the proximal duodenum, the stomach, and the esophagus, often in areas of Barrett's esophagus. 

Etiology. There are several important etiologic factors. 
Duodenal ulcers occur predominantly in patients with excess acid secretion, while gastric ulcers usually occur in patients with lower than average acid secretion. 

Other predisposing conditions include smoking, cirrhosis, pancreatitis, hyperparathyroidism, and H. pylori infection. Aspirin, steroids, and NSAlDs are known to be assoicated with peptic ulcer disease. Next to H. pylori colonization, aspirin or NSAID ingestion is the most common cause of peptic ulcer. 

Clinical features. Patients experience episodic epigastric pain. Duodenal and most gastric ulcers are relieved by food or antacids. Approximately one-fifth of gastric ulcer patients get no relief from eating or experience pain again  within 30 minutes.

Pathology. Benign peptic ulcers are well-circumscribed  lesions with a loss of the mucosa, underlying scarring, and sharp walls. 

Complications include hemorrhage, perforation, obstruction, and pain. Duodenal ulcers do not become malignant .Gastric ulcers do so only rarely; those found to be ma1ignant likely originated as a cancer that ulcerated.

Diagnosis is made by upper gastrointestinal Series , endoscopy, and biopsy to rule out malignancy or to demonstrate the presence of H. pylori. 

4. Stress ulcers 

are superficial mucosal ulcers of the stomach or duodenum or both. Stress may be induced by burns, sepsis shock, trauma, or increased intracranial pressure. 


Tumors 
1. Benign 

a. Leiomyoma, often multiple, is the most common benign neoplasm of the stomach. Clinical features include bleeding, pain, and iron deficiency anemia. 

b. Gastric polyps are due to proliferation of the mucosal epithelium. 

2. Malignant tumors 

a. Carcinoma 

Etiology. Primary factors include genetic predisposition and diet; other factors include hypochlorhydria, pernicious anemia, atrophic gastritis, adenomatous polyps, and exposure to nitrosamines. H. pylori are also implicated. 

Clinical features. Stomach cancer is usually asymptomatic until late, then presents with anorexia, weight loss, anemia, epigastric pain, and melena. Virchow's node is a common site of metastasis. 

Pathology. Symptomatic late gastric carcinoma may be expanding or infiltrative. In both cases the prognosis is poor (approximately 10% 5-year survival), and metastases are frequently present at the time of diagnosis. 
Adenocarcinomas are most common. 

b. Gastrointestinal lymphomas may be primary In the gastrointestinal tract as solitary masses. 

c. Sarcoma is a rare, large, ulcerating mass that extends into the lumen. 

d. Metastatic carcinoma. Krukenberg's tumor is an ovaria metastasis from a gastric carcinoma. 

e. Kaposi's sarcoma. The stomach is the most commonly involved GI organ in Kaposi's sarcoma. It primarily occurs in homosexual men, appearing as hemorrhagic polypoid, umbilicated nodular lesions, typically in a submucosal location. It rarely causes symptoms


 

Explore by Exams