Talk to us?

- NEETMDS- courses
NEET MDS Lessons
General Microbiology

ANTIGEN-ANTIBODY REACTIONS

I. NATURE OF ANTIGEN-ANTIBODY REACTIONS

A. Lock and Key Concept 

The combining site of an antibody is located in the Fab portion of the molecule and is constructed from the hypervariable regions of the heavy and light chains. Antigen-antibody reactions is one of a key (i.e. the antigen) which fits into a lock (i.e. the antibody).

B. Non-covalent Bonds 

The bonds that hold the antigen to the antibody combining site are all non-covalent in nature. These include hydrogen bonds, electrostatic bonds, Van der Waals forces and hydrophobic bonds. 

C. Reversibility
Since antigen-antibody reactions occur via non-covalent bonds, they are by their nature reversible.
II. AFFINITY AND AVIDITY

A. Affinity 
Antibody affinity is the strength of the reaction between a single antigenic determinant and a single combining site on the antibody. It is the sum of the attractive and repulsive forces operating between the antigenic determinant and the combining site of the antibody .

B. Avidity
Avidity is a measure of the overall strength of binding of an antigen with many antigenic determinants and multivalent antibodies. Avidity is influenced by both the valence of the antibody and the valence of the antigen. Avidity is more than the sum of the individual affinities.

III. SPECIFICITY AND CROSS REACTIVITY

A. Specificity 

Specificity refers to the ability of an individual antibody combining site to react with only one antigenic determinant or the ability of a population of antibody molecules to react with only one antigen. In general, there is a high degree of specificity in antigen-antibody reactions. 

B. Cross reactivity 

Cross reactivity refers to the ability of an individual antibody combining site to react with more than one antigenic determinant or the ability of a population of antibody molecules to react with more than one antigen. 


 

Enzymes:

Serum lysozyme:

Provides innate & nonspecific immunity
Lysozyme is a hydrolytic enzyme capable of digesting bacterial cell walls containing peptidoglycan 
•    In the process of cell death, lysosomal NZs fxn mainly to aulolyse necrotic cells (NOT “mediate cell degradation”)
•    Attacks bacterial cells by breaking the bond between NAG and NAM.
•    Peptidoglycan – the rigid component of cell walls in most bacteria – not found in archaebacteria or eukaryotic cells
•    Lysozyme is found in serum, tears, saliva, egg whites & phagocytic cells protecting the host nonspecifically from microorganisms

Superoxide dismutase: catalyzes the destruction of O2 free radicals protecting O2-metabolizing cells against harmful effects 

Catalase:

- catalyzes the decomposition of H2O2 into H2O & O2
- Aerobic bacteria and facultative anaerobic w/ catalase are able to resist the effects of H2O2
- Anaerobic bacteria w/o catalase are sensitive to H2O2  (Peroxide), like Strep
- Anaerobic bacteria (obligate anaerobes) lack superoxide dismutase or catalase
- Staph makes catalase, where Strep does not have enough staff to make it

Coagulase

- Converts Fibronogen to fibrin
•    Coagulase test is the prime criterion for classifying a bug as Staph aureus – from other Staph species
•    Coagulase is important to the pathogenicity of S. aureus because it helps to establish the typical abscess lesion 
•    Coagulase also coats the surface w/ fibrin upon contact w/ blood, making it harder to phagocytize

PHAGOCYTOSIS AND INTRACELLULAR KILLING

A. Phagocytic cells

1. Neutrophiles/Polymorphonuclear cells

PMNs are motile phagocytic cells that have lobed nuclei. They can be identified by their characteristic nucleus or by an antigen present on the cell surface called CD66. They contain two kinds of granules the contents of which are involved in the antimicrobial properties of these cells. 

The second type of granule found in more mature PMNs is the secondary or specific granule. These contain lysozyme, NADPH oxidase components, which are involved in the generation of toxic oxygen products, and characteristically lactoferrin, an iron chelating protein and B12-binding protein.

2. Monocytes/Macrophages

 Macrophages are phagocytic cells . They can be identified morphologically or by the presence of the CD14 cell surface marker. 

B. Response of phagocytes to infection 

Circulating PMNs and monocytes respond to danger (SOS) signals generated at the site of an infection. SOS signals include N-formyl-methionine containing peptides released by bacteria, clotting system peptides, complement products and cytokines released from tissue macrophages that have encountered bacteria in tissue.
Some of the SOS signals stimulate endothelial cells near the site of the infection to express cell adhesion molecules such as ICAM-1 and selectins which bind to components on the surface of phagocytic cells and cause the phagocytes to adhere to the endothelium. 
Vasodilators produced at the site of infection cause the junctions between endothelial cells to loosen and the phagocytes then cross the endothelial barrier by “squeezing” between the endothelial cells in a process called diapedesis.

 Once in the tissue spaces some of the SOS signals attract phagocytes to the infection site by chemotaxis (movement toward an increasing chemical gradient). The SOS signals also activate the phagocytes, which results in increased phagocytosis and intracellular killing of the invading organisms.

C. Initiation of Phagocytosis 

Phagocytic cells have a variety of receptors on their cell membranes through which infectious agents bind to the cells. These include:

1. Fc receptors – Bacteria with IgG antibody on their surface have the Fc region exposed and this part of the Ig molecule can bind to the receptor on phagocytes. Binding to the Fc receptor requires prior interaction of the antibody with an antigen. Binding of IgG-coated bacteria to Fc receptors results in enhanced phagocytosis and activation of the metabolic activity of phagocytes (respiratory burst).

2. Complement receptors – Phagocytic cells have a receptor for the 3rd component of complement, C3b. Binding of C3b-coated bacteria to this receptor also results in enhanced phagocytosis and stimulation of the respiratory burst. 

3. Scavenger receptors – Scavenger receptors bind a wide variety of polyanions on bacterial surfaces resulting in phagocytosis of bacteria.

4. Toll-like receptors – Phagocytes have a variety of Toll-like receptors (Pattern Recognition Receptors or PRRs) which recognize broad molecular patterns called PAMPs (pathogen associated molecular patterns) on infectious agents. Binding of infectious agents via Toll-like receptors results in phagocytosis and the release of inflammatory cytokines (IL-1, TNF-alpha and IL-6) by the phagocytes.

D. Phagocytosis 

The pseudopods eventually surround the bacterium and engulf it, and the bacterium is enclosed in a phagosome. During phagocytosis the granules or lysosomes of the phagocyte fuse with the phagosome and empty their contents. The result is a bacterium engulfed in a phagolysosome which contains the contents of the granules or lysosomes.

E. Respiratory burst and intracellular killing

During phagocytosis there is an increase in glucose and oxygen consumption which is referred to as the respiratory burst. The consequence of the respiratory burst is that a number of oxygen-containing compounds are produced which kill the bacteria being phagocytosed. This is referred to as oxygen-dependent intracellular killing. In addition, bacteria can be killed by pre-formed substances released from granules or lysosomes when they fuse with the phagosome. This is referred to as oxygen-independent intracellular killing.

1. Oxygen-dependent myeloperoxidase-independent intracellular killing

During phagocytosis glucose is metabolized via the pentose monophosphate shunt and NADPH is formed. Cytochrome B which was part of the specific granule combines with the plasma membrane NADPH oxidase and activates it. The activated NADPH oxidase uses oxygen to oxidize the NADPH. The result is the production of superoxide anion. Some of the superoxide anion is converted to H2O2 and singlet oxygen by superoxide dismutase. In addition, superoxide anion can react with H2O2 resulting in the formation of hydroxyl radical and more singlet oxygen. The result of all of these reactions is the production of the toxic oxygen compounds superoxide anion (O2-), H2O2, singlet oxygen (1O2) and hydroxyl radical (OH•).

2. Oxygen-dependent myeloperoxidase-dependent intracellular killing 

As the azurophilic granules fuse with the phagosome, myeloperoxidase is released into the phagolysosome. Myeloperoxidase utilizes H2O2 and halide ions (usually Cl-) to produce hypochlorite, a highly toxic substance. Some of the hypochlorite can spontaneously break down to yield singlet oxygen. The result of these reactions is the production of toxic hypochlorite (OCl-) and singlet oxygen (1O2).

3. Detoxification reactions 

PMNs and macrophages have means to protect themselves from the toxic oxygen intermediates. These reactions involve the dismutation of superoxide anion to hydrogen peroxide by superoxide dismutase and the conversion of hydrogen peroxide to water by catalase. 

4. Oxygen-independent intracellular killing 

In addition to the oxygen-dependent mechanisms of killing there are also oxygen–independent killing mechanisms in phagocytes: cationic proteins (cathepsin) released into the phagolysosome can damage bacterial membranes; lysozyme breaks down bacterial cell walls; lactoferrin chelates iron, which deprives bacteria of this required nutrient; hydrolytic enzymes break down bacterial proteins. Thus, even patients who have defects in the oxygen-dependent killing pathways are able to kill bacteria. However, since the oxygen-dependent mechanisms are much more efficient in killing, patients with defects in these pathways are more susceptible and get more serious infections.

Variant Forms of Bacteria

Prortoplast ; surface is completely devoid of cell wall component,

Spheroplast : Some residual cell wall component is present 

Autoplast: protoplasts which are produced by the action of organisms’ own autolytic enzymes.

L Form: replicate as pleomorphic filtrable elements with defective or no cell wall These are designated as L forms after the Lister Institute where these were discovered by Klineberger-Nobel.

Bacterial Spores: Gram positive bacilli and actinomycetes form highly resistant and dehydrated forms which are called as endospores. The surrounding mother.cell which give rise to them is known as Sporangium. These endospores are capable of survival under adverse conditions
Structure :smooth walled and ovoid or spherical. 

In bacilli, spores usually fit into the normal cell diameter except in Clostridium where these may cause a terminal bulge. (drum stick ) or central. , these look like areas of high refractilitv under light microscope.

Germination : This is the process of converting a spore into the vegetative cell. It occurs in less than 2 hours and has three stages:Activation, Germination, Outgrowth
 

BACTERIAL GROWTH

The conversion of a parental cell into two daughters constitutes the bacterial life cycle and the time taken to complete cell cycle is known as generation_time. This is around 15 minutes in vegetative bacteria except mycobacteria.

Bacterial Growth Curve

In the presence of fresh growth medium a bacterium shows following four phases;

The Lag phase -> The Log phase -> The Stationary phase  -> The Decline phase

The Lag Phase : short duration , bacteria adapt themselves to new environment 

The Log Phase (Exponential Phase) : Regular growth of bacteria occurs The morphology of bacteria is best developed in this phase and organisms manifest typical biochemical characters. 

- Most of the cidal Abx work best in this phase
•    i.e. Ampicillin
- Best phase for staining bacterial cultures

Chemostat and turbidostat are examples of technique by which this phase can be prolonged.

Stationary Phase : balanced growth and cell division cannot be sustained. The total cell Count remains static till lysis supervenes, but the viable cell count quickly declines.

Decline Phase: death phase. Dyeing bacteria exceed the dividing bacterias.
 

Radioimmunoassays (RIA)

It is an extremely sensitive technique in which antibody or antigen is labelled with a radioactive material. The amount of radioactive material in the antigen-antibody complex can be measured with which concentration of antigen or antibody can be assayed. After the reaction ‘free’ and ‘bound’ fractions of antigen are separated and their radioactivity-measured.
 

CHEMICAL AGENTS

Chlorine and iodine are most useful disinfectant Iodine as a skin disinfectant and chlorine as a water disinfectant have given consistently magnificent results. Their activity is almost exclusively bactericidal and they are effective against sporulating organisms also. 
Mixtures of various surface acting agents with iodine are known as iodophores and these are used for the sterilization of dairy products.

Apart from chlorine, hypochlorite, inorganic chioramines are all good disinfectants but they act by liberating chlorine. 

Hydrogen peroxide in a 3% solution is a harmless but very weak disinfectant whose primary use is in the cleansing of the wound.
 
Potassium permanganate is another oxidising agent which is used in the treatment of urethntzs. 

Formaldehyde — is one of the least selective agent acting on proteins. It is a gas that is usually employed as its 37% solution, formalin. 

When used in sufficiently high concentration it destroys the bacteria and their spores.


Classification of chemical sterilizing agents

Chemical disinfectant

Interfere with membrane functions

•    Surface acting agents : Quaternary ammonium, Compounds, Soaps and fatty acids

•    Phenols : Phenol, cresol, Hexylresorcinol

•    Organic solvent : Chloroform, Alcohol

Denatures proteins

•    Acids and alkalies : Organic acids, Hydrochloric acid , Sulphuric acid

Destroy functional groups of proteins

•    Heavy metals :  Copper, silver , Mercury

•    Oxidizing agents: Iodine, chlorine, Hydrogen peroxide

•    Dyes : Acridine orange, Acriflavine

•    Alkylating agents : Formaldehyde, Ethylene oxide

Applications and in-use dilution of chemical disinfectants

Alcohols : Skin antiseptic Surface disinfectant, Dilution used 70%

Mercurials : Skin antiseptic Surface disinfectant Dilution Used 0.1 %

Silver nitrate : Antiseptic (eyes and burns)  Dilution Used 1 %

Phenolic compound : Antiseptic skin washes  Dilution Used .5 -5 %

Iodine : Disinfects inanimate object, Skin antiseptic Dilution used  2%

Chlorine compounds  : Water treatment Disinfect inanimate objects , Dillution used 5 %

Quaternary ammonium Compounds : Skin antiseptic , Disinfects inanimate object, Dilution Used < 1 %

Glutaraldehyde: Heat sensitve instruments, Dilution used 1-2 %

Cold sterilization can be achieved by dipping the precleaned instrument in 2% solution of gluteraldehyde for 15-20 minutes. This time is sufficient to kill the vegetative form as well as spores ofthe organisms that are commonly encountered in the dentistry.

Ethylene oxide is an a agent extensively used in gaseous sterilization. It is active against all kinds of bacteria and their spores. but its greatest utility is in sterilizing those objects which are damaged by heat (e.g. heart lung machine). It is also used to sterlise fragile, heat sensitive equipment, powders as well as components of space crafts.


Evaluation of Disinfectants

Two methods which are widely employed are:

 Phenol coefficient test, Kelsey -Sykes test
 
These tests determine the capacity of disinfectant as well as their ability to retain their activity.
 

Explore by Exams