Talk to us?

- NEETMDS- courses
NEET MDS Lessons
General Microbiology

GENETIC VARIATION

Two methods are known for genetic variation in bacteria: mutation and gene transfer.

Mutation : Any change in the sequence of bases of DNA, irrespective of detectable changes in the cell phenotype. Mutations may be spontaneous or induced by various agents which are known as mutagens. 

Spontaneous Mutations: Arise from enzymatic imperfections during DNA replications or with transient insertions of transposable elements.

Induced Mutations: Mutation by physical and chemical mutagens.

Physical mutagens  ultraviolet rays and high-energy ionizing radiations. The primary effect of UV rays on DNA is the production of pyrmidine dimers whereas ionizing radiations cause single_stranded breaks the DNA molecules.

Chemical mutagens :Affecting nucleotide sequence

(i) Agents which cause error in base pairing (e.g. nitrous acid and alkylating agents).
(ii) Agents which cause errors in DNA replication (e.g. acridine dyes such as acridine orange and profiavine).
(iii) Base analogs which are incorporated into DNA and cause replication errors (e.g. 5-bromouracil)

Gene Transfer

Transformation: Uptake of naked DNA

Transduction    : Infection by a nonlethal bacteriophage

Conjugation    : Mating between cells in contact

Protoplast fusion

Transformation: Gene transfer by soluble DNA is called as transformation. it requires that DNA be absorbed by the cell, gain entrance to the cytoplasm and undergo recombination with the host genome. 

Artificial Transformation(transfection) :Some of the bacteria (such as Escherichia coli) resist transformation until they are subjected to some special treatment such as CaCl2 to make the bacterium more permeable to DNA. Such modified cells can also take up intact double stranded DNA extracted from viruses or in the shape of plasmids. Though the process is same as transformation, it is 9 as transfection because it results in infection by an abnormal route

Transduction :The type of gene transfer in which the DNA of one bacterial cell is introduced into another bacterial cell by viral infection is known as transduction. This introduces only a small fragment of DNA. Because the DNA is protected from damage by the surrounding phage coat, transduction is an easier to perform and more reproducible process than transduction. ,

Two types of transduction are known.

- Generalized transduction When a bacteriophage picks up fragments of host DNA at random and can transfer any genes

-  Specialised transduction: phage DNA that has been integrated into the host chromosome is excised along with a few adjacent genes, which the phage can then transfer.

After entry into the host cell, the phage DNA gets incorporated into the host chromosome in such a way that the two genomes are linearly contiguous (lysogeny). The phage genome in this stage is known as prophage, The host cell acquires a significant new property as a consequence of lysogeny because it becomes immune to infection by homologous phage. This is hence called as lysogenic conversion and endow toxigenicity to Corynebacterium diphtheriae

Abortive Transduction :phage DNA fails to integrated into the host chromosome, the process is called as abortive transduction The phage DNA does not replicate and along with binary fission Of the host it goes into one of the daughter cells.

Conjugation :This is defined as the transfer of DNA directly from on bacterial. .cell to another by a mechanism that requires cell-to-cell contact. 

The capacity to donate DNA depends upon the possession of the fertility (F) factor. The F pili  also retard male-male union. Concomitant with effective male-female pair formation, the circular DNA bearing the F factor is converted to a linear form that is transferred to the female cell in a sequential manner. DNA replication occurs in the male cell and the newly synthesized, semiconserved DNA molecule remains in the male. This ensures postmating characters of the male.

Conjugation in Different Bacteria: Unusual form of plasmid transfer, called phase mediated conjugation has  been reported to occur with some strains of Staphylococcus aureus.

Protoplast Fusion: Also called as genetic transfusion. Under osmotically buffered Conditions protoplast fusion takes place by joining of cell membrane and generation of cytoplasmic bridges through which genetic material can be exchanged.

Transposons: Transposons  Tn  are  DNA sequences which are incapable of autonomous existence and which transpose blocks of genetic material back and forth between cell Chromosome and smaller replicons such as plasmids. insertion sequences (IS ) are another similar group of nucleotides which can move from one chromosome to another

Genetic material. IS and  Tn are collectively also known as transposable elements or Jumping genes. These are now recognised to play an important role in bringing about vanous types of mutations.


 

Enzymes:

Serum lysozyme:

Provides innate & nonspecific immunity
Lysozyme is a hydrolytic enzyme capable of digesting bacterial cell walls containing peptidoglycan 
•    In the process of cell death, lysosomal NZs fxn mainly to aulolyse necrotic cells (NOT “mediate cell degradation”)
•    Attacks bacterial cells by breaking the bond between NAG and NAM.
•    Peptidoglycan – the rigid component of cell walls in most bacteria – not found in archaebacteria or eukaryotic cells
•    Lysozyme is found in serum, tears, saliva, egg whites & phagocytic cells protecting the host nonspecifically from microorganisms

Superoxide dismutase: catalyzes the destruction of O2 free radicals protecting O2-metabolizing cells against harmful effects 

Catalase:

- catalyzes the decomposition of H2O2 into H2O & O2
- Aerobic bacteria and facultative anaerobic w/ catalase are able to resist the effects of H2O2
- Anaerobic bacteria w/o catalase are sensitive to H2O2  (Peroxide), like Strep
- Anaerobic bacteria (obligate anaerobes) lack superoxide dismutase or catalase
- Staph makes catalase, where Strep does not have enough staff to make it

Coagulase

- Converts Fibronogen to fibrin
•    Coagulase test is the prime criterion for classifying a bug as Staph aureus – from other Staph species
•    Coagulase is important to the pathogenicity of S. aureus because it helps to establish the typical abscess lesion 
•    Coagulase also coats the surface w/ fibrin upon contact w/ blood, making it harder to phagocytize

Bacteria

A bacterial cell has a nuclear apparatus which is a loose arrangement of DNA This is surrounded cytoplasm which contains ribosomes, mesosomes and inclusion granules. The cytoplasm is enclosed within a cytoplasmic membrane. Bacterium has a rigid cell wall  Fimbriae and flagella are the surface adherents. Some bacteria may have a capsule (or loose slime) around the cell wall.

Shape and Size of Bacteria

The bacteria can be spheroidal (coccus), rod or cylindrical (bacillus) and spirillar (spirochaete). Very short bacilli are called as coccobacilli  Some of the bacilli may be curved or comma shaped (Vibrio cholerae).

Arrangement of Bacterial Cells

Streptococci are present in chains; staphylococci in grape-like clusters Cocci in pairs (diplococci) are suggestive of pneumococci, gonococci or menigococci.
Bacilli do not exhibit typical arrangement pattern except the Chinese letter arrangement shown by Corynebacterium diphtheriae

Surface Adherents and Appendages

CAPSULE The gels formed by the capsule adhere to the cell Capsule can be detected by negative staining ,with specific antiserum and observing the capsular swelling phenomenon called as Quellung reaction
Usually weakly antigenic Capsule production is better in vivo as compared to in vitro environment.
Eg. Capsules seen in Pneumococci,  Klebsiella, Escherichia coli, Haemophilus influenzae

Flagella : provide motility to the bacterium. 
Motile organisms: vibrios, pseudomonas, Esch.coli, salmonellae, spirochaetes and spirilla. 
Pathogenic cocci are nomotile.
Flagella measure in length from 3 to 20 µm and in diameter from 0.01 to 0.0 13 µm.
 
Arrangement

Bacteria with one polar flagellum are known as monotrichous; 
Tuft of several polar flagellae is known as lophotrichous
Presence of  Flagellae at both the ends of organism is amphitrichous 
Flagellae distributed all over the surface of the bacterium, it is called peritrichous.
•    Filament is composed of a protein-flagellin. The flagellar antigen is called as H (Hauch) antigen in contrast to somatic antigen which is called as O (Ohne haunch)

PILI (fimbriae) : hair like structures help in attachment also called sex pilli, transfers genetic material through conjugation , Present in Certain Gram negative bacteria. Only Composed of protein pilin  
Gram positive bacterium that has pili is Cornebacterium renale

The Cell Wall

The cell wall of  bacteria is multilayered structure. The external surface of cell wall is smooth in Gram positive bacteria  Gram negative bacteria have convoluted cell surfaces. The average thickness of cell wall is 0.15 to 0.50 .µm. Chemically composed of mucopeptide scaffolding formed by N acetyl glucosamine and N acetyl muramic acid
The cell wall is a three layered structure in Gram negative bacteria: outer membrane middle layer and plasma membrane. The outer membrane consists of lipoprotein and 1ipoppolysaccaride component

Functions of bacterial cell wall

 Provides shape , Gives rigidity , Protection, Surface has receptor sites for phages, Site of  antibody action,  Provides attachment to complement, Contains components toxic to host
 
Cytoplasmic Structures

The Plasma Membrane: This delicate membrane separates rigid cell wall from cytoplasm. It accounts for 30% of total cell weight. Chemically, it is 60% protein, 20-30% lipids and remaining carbohydrates.

 Mesosomes: 
 
 Principal sites of respiratory enzyme , Seen well in Gram positive bacteria as compared to Gram negative batcteria. Attachement of mesosomes to both DNA chromatin and membrane have been noticed thus help in cell division
 
Ribosomes: 

sites of protein synthesis. These are composed of RNA and proteins and constitute upto 4 of total cell protein and 90% of total cellular RNA.
Cytoplasmic Granules: Glycogen  :  Enteric bacteria
Poly-beta & hydroxy Butyrate : Bacillus & Pseudomonas
Babes-Ernst  :Corynebacterium & Yersinia pestis

Nuclear Apparatus

Bacterial DNA represents 2-3% of the cell weight and 10% of the volume of bacterium. Nucleous can be demonstrated by staining it with DNA specific Fuelgen stain .Consists of a single molecule of  double stranded DNA arranged in a circular form. Bacterial chromosome is haploid and replicates by binary fission, the bacteria may have  plasmid an extrachromosomal genetic material.
 

PHAGOCYTOSIS AND INTRACELLULAR KILLING

A. Phagocytic cells

1. Neutrophiles/Polymorphonuclear cells

PMNs are motile phagocytic cells that have lobed nuclei. They can be identified by their characteristic nucleus or by an antigen present on the cell surface called CD66. They contain two kinds of granules the contents of which are involved in the antimicrobial properties of these cells. 

The second type of granule found in more mature PMNs is the secondary or specific granule. These contain lysozyme, NADPH oxidase components, which are involved in the generation of toxic oxygen products, and characteristically lactoferrin, an iron chelating protein and B12-binding protein.

2. Monocytes/Macrophages

 Macrophages are phagocytic cells . They can be identified morphologically or by the presence of the CD14 cell surface marker. 

B. Response of phagocytes to infection 

Circulating PMNs and monocytes respond to danger (SOS) signals generated at the site of an infection. SOS signals include N-formyl-methionine containing peptides released by bacteria, clotting system peptides, complement products and cytokines released from tissue macrophages that have encountered bacteria in tissue.
Some of the SOS signals stimulate endothelial cells near the site of the infection to express cell adhesion molecules such as ICAM-1 and selectins which bind to components on the surface of phagocytic cells and cause the phagocytes to adhere to the endothelium. 
Vasodilators produced at the site of infection cause the junctions between endothelial cells to loosen and the phagocytes then cross the endothelial barrier by “squeezing” between the endothelial cells in a process called diapedesis.

 Once in the tissue spaces some of the SOS signals attract phagocytes to the infection site by chemotaxis (movement toward an increasing chemical gradient). The SOS signals also activate the phagocytes, which results in increased phagocytosis and intracellular killing of the invading organisms.

C. Initiation of Phagocytosis 

Phagocytic cells have a variety of receptors on their cell membranes through which infectious agents bind to the cells. These include:

1. Fc receptors – Bacteria with IgG antibody on their surface have the Fc region exposed and this part of the Ig molecule can bind to the receptor on phagocytes. Binding to the Fc receptor requires prior interaction of the antibody with an antigen. Binding of IgG-coated bacteria to Fc receptors results in enhanced phagocytosis and activation of the metabolic activity of phagocytes (respiratory burst).

2. Complement receptors – Phagocytic cells have a receptor for the 3rd component of complement, C3b. Binding of C3b-coated bacteria to this receptor also results in enhanced phagocytosis and stimulation of the respiratory burst. 

3. Scavenger receptors – Scavenger receptors bind a wide variety of polyanions on bacterial surfaces resulting in phagocytosis of bacteria.

4. Toll-like receptors – Phagocytes have a variety of Toll-like receptors (Pattern Recognition Receptors or PRRs) which recognize broad molecular patterns called PAMPs (pathogen associated molecular patterns) on infectious agents. Binding of infectious agents via Toll-like receptors results in phagocytosis and the release of inflammatory cytokines (IL-1, TNF-alpha and IL-6) by the phagocytes.

D. Phagocytosis 

The pseudopods eventually surround the bacterium and engulf it, and the bacterium is enclosed in a phagosome. During phagocytosis the granules or lysosomes of the phagocyte fuse with the phagosome and empty their contents. The result is a bacterium engulfed in a phagolysosome which contains the contents of the granules or lysosomes.

E. Respiratory burst and intracellular killing

During phagocytosis there is an increase in glucose and oxygen consumption which is referred to as the respiratory burst. The consequence of the respiratory burst is that a number of oxygen-containing compounds are produced which kill the bacteria being phagocytosed. This is referred to as oxygen-dependent intracellular killing. In addition, bacteria can be killed by pre-formed substances released from granules or lysosomes when they fuse with the phagosome. This is referred to as oxygen-independent intracellular killing.

1. Oxygen-dependent myeloperoxidase-independent intracellular killing

During phagocytosis glucose is metabolized via the pentose monophosphate shunt and NADPH is formed. Cytochrome B which was part of the specific granule combines with the plasma membrane NADPH oxidase and activates it. The activated NADPH oxidase uses oxygen to oxidize the NADPH. The result is the production of superoxide anion. Some of the superoxide anion is converted to H2O2 and singlet oxygen by superoxide dismutase. In addition, superoxide anion can react with H2O2 resulting in the formation of hydroxyl radical and more singlet oxygen. The result of all of these reactions is the production of the toxic oxygen compounds superoxide anion (O2-), H2O2, singlet oxygen (1O2) and hydroxyl radical (OH•).

2. Oxygen-dependent myeloperoxidase-dependent intracellular killing 

As the azurophilic granules fuse with the phagosome, myeloperoxidase is released into the phagolysosome. Myeloperoxidase utilizes H2O2 and halide ions (usually Cl-) to produce hypochlorite, a highly toxic substance. Some of the hypochlorite can spontaneously break down to yield singlet oxygen. The result of these reactions is the production of toxic hypochlorite (OCl-) and singlet oxygen (1O2).

3. Detoxification reactions 

PMNs and macrophages have means to protect themselves from the toxic oxygen intermediates. These reactions involve the dismutation of superoxide anion to hydrogen peroxide by superoxide dismutase and the conversion of hydrogen peroxide to water by catalase. 

4. Oxygen-independent intracellular killing 

In addition to the oxygen-dependent mechanisms of killing there are also oxygen–independent killing mechanisms in phagocytes: cationic proteins (cathepsin) released into the phagolysosome can damage bacterial membranes; lysozyme breaks down bacterial cell walls; lactoferrin chelates iron, which deprives bacteria of this required nutrient; hydrolytic enzymes break down bacterial proteins. Thus, even patients who have defects in the oxygen-dependent killing pathways are able to kill bacteria. However, since the oxygen-dependent mechanisms are much more efficient in killing, patients with defects in these pathways are more susceptible and get more serious infections.

Measurement of Bacterial of Growth

A convenient method is to determine turbidity by photoelectric colorimeter or spectrophotometer. 
The cell number can be counted as total cell number as well as viable count. Viable Count Viable number of bacteria can be counted by inoculating the suspension onto solid growth medium and counting the number of colonies. Since each colony is the end product of one viable bacterium, their count gives the number of viable bacteria in the suspension.
Total number of bacteria can be ascertained in specially designed chambers such as Coulter counter.
 

NON-SPECIFIC KILLER CELLS

Several different cells including NK and LAK cells, K cells, activated macrophages and eosinophils are capable of killing foreign and altered self target cells in a non-specific manner. These cells play an important role in the innate immune system.

A. NK and LAK cells

Natural killer (NK) cells are also known as large granular lymphocytes (LGL) because they resemble lymphocytes in their morphology, except that they are slightly larger and have numerous granules.

NK cells can be identified by the presence of CD56 and CD16 and a lack of CD3 cell surface markers.

NK cells are capable of killing virus-infected and malignant target cells but they are relatively inefficient in doing so.

However, upon exposure to IL-2 and IFN-gamma, NK cells become lymphokine-activated killer (LAK) cells, which are capable of killing malignant cells.

Continued exposure to IL-2 and IFN-gamma enables the LAK cells to kill transformed as well as malignant cells. LAK cell therapy is one approach for the treatment of malignancies.

NK and LAK cells have two kinds of receptors on their surface – a killer activating receptor (KAR) and a killer inhibiting receptor (KIR). 

When the KAR encounters its ligand, a killer activating ligand (KAL) on the target cell the NK or LAK cells are capable of killing the target. However, if the KIR also binds to its ligand then killing is inhibited even if KAR binds to KAL. 

The ligands for KIR are MHC-class I molecules. Thus, if a target cell expresses class I MHC molecules it will not be killed by NK or LAK cells even if the target also has a KAL which could bind to KAR. 

Normal cells constitutively express MHC class I molecules on their surface, however, virus infected and malignant cells down regulate expression of class I MHC. Thus, NK and LAK cells selectively kill virus-infected and malignant cells while sparing normal cells.

B. K cells 

Killer (K) cells are not a morphologically distinct type of cell. Rather a K cell is any cell that mediates antibody-dependent cellular cytotoxicity (ADCC). 

In ADCC antibody acts as a link to bring the K cell and the target cell together to allow killing to occur. K cells have on their surface an Fc receptor for antibody and thus they can recognize, bind and kill target cells coated with antibody. 

Killer cells which have Fc receptors include NK, LAK, and macrophages which have an Fc receptor for IgG antibodies and eosinophils which have an Fc receptor for IgE antibodies.

Method of Sterilization for common items

Autoclaving :  Animal cages, Sugar tubes, Lab. Coats, Cotton , Filters, Instruments Culture media, Rubber, Gloves , Stopper, Tubing, Slides,  Syringe and Wax needles , Test tubes, Enamel metal trays ,Wire baskets, Wood, Tongue depressor, Applicator, Endodontic instruments, Orthodontic pliers , Orthodontic kits, Saliva ejector, Handpieces Cavitron heads, Steel burs, Steel tumbler, Hand instruments    

Hot air oven

Beakers, Flasks, Petri dish, Slides, Syringes, Test tubes, Glycerine, Needles ,Oil, Paper Saliva ejector, Matrix Band

Ethylene oxide

Fabric, Bedding, Blanket, Clothing, Matteresses, Pillows, Disposable instruments , Instruments, Blades, Knives, Scalpels, Scissors ,Talcum powder, Books, Cups, plates , Plastics., Flask, Petridish, Tubes, Tubing, Rubber , catheters, Drains, Gloves ,Special items - Bronchoscope, Cystoscope, Heart lung machine

Glutaraldehyde

Orthodontic kits, Orthodontic pliers , Steel burrs, 3 in 1 syringe tips ,Cystoscope ,Endoscope

Filtration

Antibiotics, Serum, Vaccines
 

Explore by Exams