NEET MDS Lessons
General Microbiology
NUTRITION OF BACTERIA
Nutrients
Chemoheterotrophs: nutrient source is organic material
Bacteria also requires a source of minerals.
Oxygen
On this basis bacteria have been divided into four groups.
Obligate Anaerobes: These grow only under conditions of high reducing intensity. These bacteria catalase peroxidase, superoxide dismutase and cytochrome systems
Clostridium and Bacteroides are important examples.
Facultalive Anaerobes. These can grow under both aerobic and anaerobic conditions and include members of family enterobacteriaceae and many other bacteria.
Obligatory Aerobes. These cannot grow unless oxygen is present in the medium. Pseudomonas belong to this group.
Microaerophillic. These organisms can grow under conditions with low oxygen tension. Clostridium tetani is an important example.
The strict anaerobes are unable to grow unless Eh is as low as 0.2 volt
Temperature
• On the basis of temperature requirements, three groups of bacteria are recognised.
• Psychrophilic : Growth in the range of —5 to 30°C with an optimum of 10-20
• Mesophillic : bacteria grow best at 20-40°C with a range of 10-45°C.
• Medically important bacteria belong to this group
• Myco. leprae is one such important example and it can grow only at reduced temperature such as footpad of mouse
• Thermophillic organisms prefer high temperature (25-80°C) for growth and yield maximum growth at 50-60°C
pH : Most pathogenic bacteria require a pH of 7.2-7.6 for their own optimal growth.
COMPLEMENT
The complement system primarily serves to fight bacterial infections.
The complement system can be activated by at least three separate pathways.
1) alternative pathway -
- The alternative pathway of complement activation starts with the spontaneous hydroysis of an internal thioester bond in the plasma complement component C3 to result in C3(H2O).
- The smaller cleavage products C3a, C4a, C5a, sometimes called "anaphylatoxins", act as phagocytes, they cause mast cell degranulation and enhance vessel permeability, thereby facilitating access of plasma proteins and leukocytes to the site of infection
- alternative pathway provides a means of non-specific resistance against infection without the participation of antibodies and hence provides a first line of defense against a number of infectious agents.
2) Lecithin Pathway
The lectin pathway of complement activation exploits the fact that many bacterial surfaces contain mannose sugar molecules in a characteristic spacing. The oligomeric plasma protein mannan-binding lectin (MBL; lectins are proteins binding sugars) binds to such a pattern of mannose moieties, activating proteases MASP-1 and MASP-2 (MASP=MBL activated serine protease, similar in structure to C1r and C1s). These, by cleaving C4 and C2, generate a second type of C3 convertase consisting of C4b and C2b, with ensuing events identical to those of the alternative pathway.
3) classical pathway
The classical pathway usually starts with antigen-bound antibodies recruiting the C1q component, followed by binding and sequential activation of C1r and C1s serine proteases. C1s cleaves C4 and C2, with C4b and C2b forming the C3 convertase of the classical pathway. Yet, this pathway can also be activated in the absence of antibodies by the plasma protein CRP (C-reactive protein), which binds to bacterial surfaces and is able to activate C1q.
Pharmacology cross reference: humanized monoclonal antibody Eculizumab binds to complement component C5, inhibiting its cleavage and preventing activation of the lytic pathway. This is desirable when unwanted complement activation causes hemolysis, as in paroxysmal nocturnal hemoglobinuria or in some forms of hemolytic uremic syndrome. For the lytic pathway's importance in fighting meningococcal infections, Eculizumab treatment increases the risk of these infections, which may be prevented by previous vaccination.
BIOLOGICALLY ACTIVE PRODUCTS OF COMPLEMENT ACTIVATION
Activation of complement results in the production of several biologically active molecules which contribute to resistance, anaphylaxis and inflammation.
Kinin production
C2b generated during the classical pathway of C activation is a prokinin which becomes biologically active following enzymatic alteration by plasmin. Excess C2b production is prevented by limiting C2 activation by C1 inhibitor (C1-INH) also known as serpin which displaces C1rs from the C1qrs complex (Figure 10). A genetic deficiency of C1-INH results in an overproduction of C2b and is the cause of hereditary angioneurotic edema. This condition can be treated with Danazol which promotes C1-INH production or with ε-amino caproic acid which decreases plasmin activity.
Anaphylotoxins
C4a, C3a and C5a (in increasing order of activity) are all anaphylotoxins which cause basophil/mast cell degranulation and smooth muscle contraction. Undesirable effects of these peptides are controlled by carboxypeptidase B (C3a-INA).
Chemotactic Factors
C5a and MAC (C5b67) are both chemotactic. C5a is also a potent activator of neutrophils, basophils and macrophages and causes induction of adhesion molecules on vascular endothelial cells.
Opsonins
C3b and C4b in the surface of microorganisms attach to C-receptor (CR1) on phagocytic cells and promote phagocytosis.
Other Biologically active products of C activation
Degradation products of C3 (iC3b, C3d and C3e) also bind to different cells by distinct receptors and modulate their functions.
Bacteria
A bacterial cell has a nuclear apparatus which is a loose arrangement of DNA This is surrounded cytoplasm which contains ribosomes, mesosomes and inclusion granules. The cytoplasm is enclosed within a cytoplasmic membrane. Bacterium has a rigid cell wall Fimbriae and flagella are the surface adherents. Some bacteria may have a capsule (or loose slime) around the cell wall.
Shape and Size of Bacteria
The bacteria can be spheroidal (coccus), rod or cylindrical (bacillus) and spirillar (spirochaete). Very short bacilli are called as coccobacilli Some of the bacilli may be curved or comma shaped (Vibrio cholerae).
Arrangement of Bacterial Cells
Streptococci are present in chains; staphylococci in grape-like clusters Cocci in pairs (diplococci) are suggestive of pneumococci, gonococci or menigococci.
Bacilli do not exhibit typical arrangement pattern except the Chinese letter arrangement shown by Corynebacterium diphtheriae
Surface Adherents and Appendages
CAPSULE The gels formed by the capsule adhere to the cell Capsule can be detected by negative staining ,with specific antiserum and observing the capsular swelling phenomenon called as Quellung reaction
Usually weakly antigenic Capsule production is better in vivo as compared to in vitro environment.
Eg. Capsules seen in Pneumococci, Klebsiella, Escherichia coli, Haemophilus influenzae
Flagella : provide motility to the bacterium.
Motile organisms: vibrios, pseudomonas, Esch.coli, salmonellae, spirochaetes and spirilla.
Pathogenic cocci are nomotile.
Flagella measure in length from 3 to 20 µm and in diameter from 0.01 to 0.0 13 µm.
Arrangement
Bacteria with one polar flagellum are known as monotrichous;
Tuft of several polar flagellae is known as lophotrichous
Presence of Flagellae at both the ends of organism is amphitrichous
Flagellae distributed all over the surface of the bacterium, it is called peritrichous.
• Filament is composed of a protein-flagellin. The flagellar antigen is called as H (Hauch) antigen in contrast to somatic antigen which is called as O (Ohne haunch)
PILI (fimbriae) : hair like structures help in attachment also called sex pilli, transfers genetic material through conjugation , Present in Certain Gram negative bacteria. Only Composed of protein pilin
Gram positive bacterium that has pili is Cornebacterium renale
The Cell Wall
The cell wall of bacteria is multilayered structure. The external surface of cell wall is smooth in Gram positive bacteria Gram negative bacteria have convoluted cell surfaces. The average thickness of cell wall is 0.15 to 0.50 .µm. Chemically composed of mucopeptide scaffolding formed by N acetyl glucosamine and N acetyl muramic acid
The cell wall is a three layered structure in Gram negative bacteria: outer membrane middle layer and plasma membrane. The outer membrane consists of lipoprotein and 1ipoppolysaccaride component
Functions of bacterial cell wall
Provides shape , Gives rigidity , Protection, Surface has receptor sites for phages, Site of antibody action, Provides attachment to complement, Contains components toxic to host
Cytoplasmic Structures
The Plasma Membrane: This delicate membrane separates rigid cell wall from cytoplasm. It accounts for 30% of total cell weight. Chemically, it is 60% protein, 20-30% lipids and remaining carbohydrates.
Mesosomes:
Principal sites of respiratory enzyme , Seen well in Gram positive bacteria as compared to Gram negative batcteria. Attachement of mesosomes to both DNA chromatin and membrane have been noticed thus help in cell division
Ribosomes:
sites of protein synthesis. These are composed of RNA and proteins and constitute upto 4 of total cell protein and 90% of total cellular RNA.
Cytoplasmic Granules: Glycogen : Enteric bacteria
Poly-beta & hydroxy Butyrate : Bacillus & Pseudomonas
Babes-Ernst :Corynebacterium & Yersinia pestis
Nuclear Apparatus
Bacterial DNA represents 2-3% of the cell weight and 10% of the volume of bacterium. Nucleous can be demonstrated by staining it with DNA specific Fuelgen stain .Consists of a single molecule of double stranded DNA arranged in a circular form. Bacterial chromosome is haploid and replicates by binary fission, the bacteria may have plasmid an extrachromosomal genetic material.
Immunoglobulin (Ig)
Immunoglobulins are glycoprotein molecules that are produced by plasma cells in response to an immunogen and which function as antibodies. The immunoglobulins derive their name from the finding that they migrate with globular proteins when antibody-containing serum is placed in an electrical field
FUNCTION
1. Immunoglobulins bind specifically to one or a few closely related antigens. Each immunoglobulin actually binds to a specific antigenic determinant. Antigen binding by antibodies is the primary function of antibodies and can result in protection of the host.
2. The significant biological effects are a consequence of secondary "effector functions" of antibodies.Phagocytic cells, lymphocytes, platelets, mast cells, and basophils have receptors that bind immunoglobulins. This binding can activate the cells to perform some function. Some immunoglobulins also bind to receptors on placental trophoblasts, which results in transfer of the immunoglobulin across the placenta. As a result, the transferred maternal antibodies provide immunity to the fetus and newborn.
STRUCTURE OF IMMUNOGLOBULINS
The basic structure of the immunoglobulins is illustrated in figure 2. Although different immunoglobulins can differ structurally, they all are built from the same basic units.
A. Heavy and Light Chains
All immunoglobulins have a four chain structure as their basic unit. They are composed of two identical light chains (23kD) and two identical heavy chains (50-70kD)
B. Disulfide bonds
1. Inter-chain disulfide bonds - The heavy and light chains and the two heavy chains are held together by inter-chain disulfide bonds and by non-covalent interactions The number of inter-chain disulfide bonds varies among different immunoglobulin molecules.
2. Intra-chain disulfide binds - Within each of the polypeptide chains there are also intra-chain disulfide bonds.
C. Variable (V) and Constant (C) Regions
When the amino acid sequences of many different heavy chains and light chains were compared, it became clear that both the heavy and light chain could be divided into two regions based on variability in the amino acid sequences. These are the:
1. Light Chain - VL (110 amino acids) and CL (110 amino acids)
2. Heavy Chain - VH (110 amino acids) and CH (330-440 amino acids)\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)h the arms of the antibody molecule forms a Y. It is called the hinge region because there is some flexibility in the molecule at this point.
E. Domains
Three dimensional images of the immunoglobulin molecule show that it is not straight as depicted in figure 2A. Rather, it is folded into globular regions each of which contains an intra-chain disulfide bond (figure 2B-D). These regions are called domains.
1. Light Chain Domains - VL and CL
2. Heavy Chain Domains - VH, CH1 - CH3 (or CH4)
F. Oligosaccharides
Carbohydrates are attached to the CH2 domain in most immunoglobulins. However, in some cases carbohydrates may also be attached at other locations.
IMMUNOGLOBULIN FRAGMENTS: STRUCTURE/FUNCTION RELATIONSHIPS
Immunoglobulin fragments produced by proteolytic digestion –
A. Fab
Digestion with papain breaks the immunoglobulin molecule in the hinge region before the H-H inter-chain disulfide bond Figure 6. This results in the formation of two identical fragments that contain the light chain and the VH and CH1 domains of the heavy chain.
Antigen binding – These fragments are called the Fab fragments because they contained the antigen binding sites of the antibody. Each Fab fragment is monovalent whereas the original molecule was divalent. The combining site of the antibody is created by both VH and VL.
B. Fc
Digestion with papain also produces a fragment that contains the remainder of the two heavy chains each containing a CH2 and CH3 domain. This fragment was called Fc because it was easily crystallized.
Effector functions – The effector functions of immunoglobulins are mediated by this part of the molecule. Different functions are mediated by the different domains in this fragment .
Treatment of immunoglobulins with pepsin results in cleavage of the heavy chain after the H-H inter-chain disulfide bonds resulting in a fragment that contains both antigen binding sites . This fragment is called F(ab’)2because it is divalent. The Fc region of the molecule is digested into small peptides by pepsin. The F(ab’)2binds antigen but it does not mediate the effector functions of antibodies.
ANTIGEN-ANTIBODY REACTIONS
Affinity of the antigen-antibody reaction refers to the intensity of the attraction between antigen and antibody molecule.
Antigen-antibody reactions
Reaction test Modified test
Precipitation -> Immunoelectrophoresis, Immunoprecipitation
Agglutination -> Latex agglutination, Indirect, Haemagglutination , Coagglutination ,Coombs test
Neutralization -> Measurement of LD, Plaque assays
Complement fixation -> Conglutination
Immunofluorescence -> Indirect immunofiuorescence, Immunoofluoremetric Assay
Enzyme immunoassay -> Enzyme linked, Immunosorbent assay
Radioimmunoassay -> Immunoradiometric assay
Avidity is the strength of the bond after the formation of antigen-antibody complex.
Sensitivity refers to the ability of the test to detect even very minute quantities of antigen or antibody. A test shall be called as highly sensitive if false negative results are absent or minimal.
Specificity refers to the ability of the test to detect reactions between homologous antigens and antibodies only, and with no other. In a highly specific test, false positive reactions will be minimal or absent.
Precipitation Reaction
This reaction takes place only when antigen is in soluble form. Such an antigen when
comes in contact with specific antibody in a suitable medium results into formation of an insoluble complex which precipitates. This precipitate usually settles down at the bottom of the tube. If it fails to sediment and remains suspended as floccules the reaction is known as flocculation. Precipitation also requires optimal concentration of NaCl, suitable temperature and appropriate pH.
Zone Phenomenon
Precipitation occurs most rapidly and abundantly when antigen and antibody are in optimal proportions or equivalent ratio. This is also known as zone of equivalence. When antibody is in great excess, lot of antibody remains uncombined. This is called zone of antibody excess or prozone. Similarly a zone of antigen excess occurs in which all antibody has combined with antigen and additional uncombined antigen is present.
Applications of Precipitation Reactions
Both qualitative determination as well as quantitative estimation of antigen and antibody can be performed with precipitation tests. Detection of antigens has been found to be more sensitive.
Agglutination
In agglutination reaction the antigen is a part of the surface of some particulate material such as erythrocyte, bacterium or an inorganic particle e.g. polystyrene latex which has been coated with antigen. Antibody added to a suspension of such particles combines with the surface antigen and links them together to form clearly visible aggregate which is called as agglutination.
Application of precipitation reactions
Precipitation reaction Example
Ring test Typing of streptococci, Typing of pneumococci
Slide test (flocculation) VDRL test
Tube test (flocculation) Kahn test
Immunodiffusion Eleks test
Immunoelectrophoresis Detection Of HBsAg, Cryptococcal antigen in CSF
NITRIC OXIDE-DEPENDENT KILLING
Binding of bacteria to macrophages, particularly binding via Toll-like receptors, results in the production of TNF-alpha, which acts in an autocrine manner to induce the expression of the inducible nitric oxide synthetase gene (i-nos ) resulting in the production of nitric oxide (NO) . If the cell is also exposed to interferon gamma (IFN-gamma) additional nitric oxide will be produced (figure 12). Nitric oxide released by the cell is toxic and can kill microorganism in the vicinity of the macrophage.