NEET MDS Lessons
General Microbiology
MICROBIAL VIRULENCE FACTORS
Microbial virulence factors are gene products required for a microbial pathogen to establish itself in the host. These gene products are located on the bacterial chromosome, or on mobile genetic elements, such as plasmids or transposons.
Primary pathogens express virulence factors that allow them to cause disease in the normal host.
Opportunistic pathogens are environmental organisms or normal flora that lack the means to overcome normal host defense mechanisms. They cause disease only when the normal host defenses are breached or deficient.
Virulence factors can be divided into several categories.
Skin - Propionibacterium acnes, Staphlococcus epidermis , diptheroids; transient colonization by Staphlococcus
aureus
Oral cavity - Viridans Streptococci, Branhamella species, Prevotella melaninogenicus, Actinomyces species, Peptostreptococcus species, other anaerobes
Nasopharynx Oral organisms; transient colonization by S. pneumoniae, Haemophilus species, N. meningitidis
Stomach Rapidly becomes sterile
Small intestine Scant
Colon - Bacteroides species, Clostridium species, Fusobacterium species, E. coli, Proteus species, Pseudomonas aeruginosa, Enterococcus species, other bacteria and yeasts
Vagina - Childbearing years:Lactobacillus species, yeasts, Streptococcus species
Prepuberty / Postmenopause: colonic and skin flora
A. Enzyme production can be of several types depending on the needs of the organism, its requirements for survival, and the local environment.
1. Hyaluronidase breaks down hyaluronic acid to aid in the digestion of tissue.
2. Protease digests proteins to enhance the spread of infections.
3. Coagulase allows coagulation of fibrinogen to clot plasma.
4. Collagenase breaks down collagen (connective tissues).
B. Toxins
1. Exotoxins are heat-labile proteins with specific enzymatic activities produced by many Gram-positive and Gram-negative organisms. Exotoxins are released extracellularly and are often the sole cause of disease.
a. Some toxins have several domains with discrete biological functions that confer maximal toxicity. An example is A-B exotoxin, where the B subunit binds to host tissue cell glycoproteins and the A subunit enzymatically attacks a susceptible target.
b. Many toxins are ADP-ribosylating toxins
2. Endotoxin is the heat-stable lipopolysaccharide moiety found in the outer membrane of Gram-negative organisms. when released by cell lysls, the lipid A portion of lipopolysaccharide can induce septic shock characterized by fever, acidosis, hypotension, complement consumption, and disseminated intravascular coagulation (DIC).
C. Surface components
may protect the organism from immune responses such as phagocytosis or aid in tissue invasion. For example, the polysaccharide capsules of H. influenzae type b and the acidic polysaccharide capsule of Streptococcus pneumoniae interfere with phagocytosis. Other surface proteins, such as adhesins or filamentous appendages (fimbriae, pili), are involved in adherence of invading microorganisms to cells of the host.
Cell Functions:
-> Autolysis
- degradative reactions in cells caused by indigenous intracellular enzymes – usually occurs after cell death
- Irreversible (along with Coagulative necrosis or infarcts) – reversible: fatty degeneration, & hydropic degeneration
-> Autolysin:
• Ab causing cellular lysis in the presence of complement
• Autolytic enzymes produced by the organism degrade the cell’s own cell wall structures
-> In the presence of cephalosporins & penicillins, growing bacterial cells lyse
• W/o functional cell wall structures, the bacterial cell bursts
-> Heterolysis: cellular degradation by enzymes derived from sources extrinsic to the cell (e.g., bacteria)
-> Necrosis: sum of intracellular degradative reactions occurring after individual cell death w/in a living organism
DISINFECTION AND STERILIZATION
• Sterilization is the best destruction or com removal_of all forms of micro organisms.
• Disinfection is the destruction of many microorganisms but usually the b spores.
• Antisepsis is the destruction or inhibition of microorganisms in living tissues thereby limiting or preventing the harmful effect of infection.
• Astatic Agent would only inhibit the growth of microorganisms (bacteriostatic, fungistatic, sporostatic).
• Acidal agent would kill the microorganism (bactericidal. virucidal, fungicidal)
• Sterilants are the chemicals which under controlled conditions can kill sporinQ bacteria.
ANTIGEN-ANTIBODY REACTIONS
Affinity of the antigen-antibody reaction refers to the intensity of the attraction between antigen and antibody molecule.
Antigen-antibody reactions
Reaction test Modified test
Precipitation -> Immunoelectrophoresis, Immunoprecipitation
Agglutination -> Latex agglutination, Indirect, Haemagglutination , Coagglutination ,Coombs test
Neutralization -> Measurement of LD, Plaque assays
Complement fixation -> Conglutination
Immunofluorescence -> Indirect immunofiuorescence, Immunoofluoremetric Assay
Enzyme immunoassay -> Enzyme linked, Immunosorbent assay
Radioimmunoassay -> Immunoradiometric assay
Avidity is the strength of the bond after the formation of antigen-antibody complex.
Sensitivity refers to the ability of the test to detect even very minute quantities of antigen or antibody. A test shall be called as highly sensitive if false negative results are absent or minimal.
Specificity refers to the ability of the test to detect reactions between homologous antigens and antibodies only, and with no other. In a highly specific test, false positive reactions will be minimal or absent.
CROSS INFECTION AND STERLIZATION IN DENTISTRY
Cross infection is defined as the transmission of infectious agents amongst patients and staff with in hospital environment.
Routes of Infection
Two routes are important : transdermal and respiratory.
In transdermal route microorganisms enter the tissues of the recipient by means of injection through intact skin or mucosa (usually due to an accident involving a sharp instrument) or via defects in the skin e.g. recent cuts and abrasions.
Microorganisms causing cross infection in dentistry
Transmitted through skin
Bacteria : Treponema pallidum, Staphylococcus aureus
Viruses :Hepatitis virus, HIV ,Herpes simplex virus, Mumps, Measles , Epstein-Barr virus
Fungi: Dermatomycoses, Candidiasis,
Transmitted through aerosols
Bordetella pertussis, Myco.tuberculosis, Streptococcus pyogenes, Influenza virus
Rhinovirus, Rubella
NON-SPECIFIC KILLER CELLS
Several different cells including NK and LAK cells, K cells, activated macrophages and eosinophils are capable of killing foreign and altered self target cells in a non-specific manner. These cells play an important role in the innate immune system.
A. NK and LAK cells
Natural killer (NK) cells are also known as large granular lymphocytes (LGL) because they resemble lymphocytes in their morphology, except that they are slightly larger and have numerous granules.
NK cells can be identified by the presence of CD56 and CD16 and a lack of CD3 cell surface markers.
NK cells are capable of killing virus-infected and malignant target cells but they are relatively inefficient in doing so.
However, upon exposure to IL-2 and IFN-gamma, NK cells become lymphokine-activated killer (LAK) cells, which are capable of killing malignant cells.
Continued exposure to IL-2 and IFN-gamma enables the LAK cells to kill transformed as well as malignant cells. LAK cell therapy is one approach for the treatment of malignancies.
NK and LAK cells have two kinds of receptors on their surface – a killer activating receptor (KAR) and a killer inhibiting receptor (KIR).
When the KAR encounters its ligand, a killer activating ligand (KAL) on the target cell the NK or LAK cells are capable of killing the target. However, if the KIR also binds to its ligand then killing is inhibited even if KAR binds to KAL.
The ligands for KIR are MHC-class I molecules. Thus, if a target cell expresses class I MHC molecules it will not be killed by NK or LAK cells even if the target also has a KAL which could bind to KAR.
Normal cells constitutively express MHC class I molecules on their surface, however, virus infected and malignant cells down regulate expression of class I MHC. Thus, NK and LAK cells selectively kill virus-infected and malignant cells while sparing normal cells.
B. K cells
Killer (K) cells are not a morphologically distinct type of cell. Rather a K cell is any cell that mediates antibody-dependent cellular cytotoxicity (ADCC).
In ADCC antibody acts as a link to bring the K cell and the target cell together to allow killing to occur. K cells have on their surface an Fc receptor for antibody and thus they can recognize, bind and kill target cells coated with antibody.
Killer cells which have Fc receptors include NK, LAK, and macrophages which have an Fc receptor for IgG antibodies and eosinophils which have an Fc receptor for IgE antibodies.
NORMAL MICROBIAL FLORA
A. Properties. Normal microbial flora describes the population of microorganisms that usually reside in the body. The microbiological flora can be defined as either
1) Resident flora - A relatively fixed population that will repopulate if disturbed,
2) Transient flora - that are derived from the local environment. These microbes usually reside in the body without invasion and can
even prevent infection by more pathogenic organisms, a phenomenon known as bacterial interference.
The flora have commensal functions such as vitamin K synthesis. However, they may cause invasive disease in immunocompromised hosts or if displaced from their normal area.
B. Location. Microbial flora differ in composition depending on their anatomical locations and microenvironments. The distribution of normal microbial flora.