Talk to us?

General Microbiology - NEETMDS- courses
NEET MDS Lessons
General Microbiology

INNATE (NON-SPECIFIC) IMMUNITY

The elements of the innate (non-specific) immune system include anatomical barriers, secretory molecules and cellular components. 

Among the mechanical anatomical barriers are the skin and internal epithelial layers, the movement of the intestines and the oscillation of broncho-pulmonary cilia. 

Associated with these protective surfaces are chemical and biological agents.

A. Anatomical barriers to infections

1. Mechanical factors

The epithelial surfaces form a physical barrier that is very impermeable to most infectious agents. Thus, the skin acts as our first line of defense against invading organisms. The desquamation of skin epithelium also helps remove bacteria and other infectious agents that have adhered to the epithelial surfaces. 

2. Chemical factors

Fatty acids in sweat inhibit the growth of bacteria. Lysozyme and phospholipase found in tears, saliva and nasal secretions can breakdown the cell wall of bacteria and destabilize bacterial membranes. The low pH of sweat and gastric secretions prevents growth of bacteria. Defensins (low molecular weight proteins) found in the lung and gastrointestinal tract have antimicrobial activity. Surfactants in the lung act as opsonins (substances that promote phagocytosis of particles by phagocytic cells). 

3. Biological factors

The normal flora of the skin and in the gastrointestinal tract can prevent the colonization of pathogenic bacteria by secreting toxic substances or by competing with pathogenic bacteria for nutrients or attachment to cell surfaces.

B. Humoral barriers to infection

Humoral factors play an important role in inflammation, which is characterized by edema and the recruitment of phagocytic cells. These humoral factors are found in serum or they are formed at the site of infection.

1. Complement system – The complement system is the major humoral non-specific defense mechanism (see complement chapter). Once activated complement can lead to increased vascular permeability, recruitment of phagocytic cells, and lysis and opsonization of bacteria. 

2. Coagulation system – Depending on the severity of the tissue injury, the coagulation system may or may not be activated. Some products of the coagulation system can contribute to the non-specific defenses because of their ability to increase vascular permeability and act as chemotactic agents for phagocytic cells. In addition, some of the products of the coagulation system are directly antimicrobial. For example, beta-lysin, a protein produced by platelets during coagulation can lyse many Gram positive bacteria by acting as a cationic detergent.

3. Lactoferrin and transferrin – By binding iron, an essential nutrient for bacteria, these proteins limit bacterial growth.

4. Interferons – Interferons are proteins that can limit virus replication in cells.

5. Lysozyme – Lysozyme breaks down the cell wall of bacteria. 

6. Interleukin -1 – Il-1 induces fever and the production of acute phase proteins, some of which are antimicrobial because they can opsonize bacteria.

C. Cellular barriers to infection

Part of the inflammatory response is the recruitment of polymorphonuclear eosinophiles and macrophages to sites of infection. These cells are the main line of defense in the non-specific immune system.

1. Neutrophils – Polymorphonuclear cells  are recruited to the site of infection where they phagocytose invading organisms and kill them intracellularly. In addition, PMNs contribute to collateral tissue damage that occurs during inflammation.

2. Macrophages – Tissue macrophages  and newly recruited monocytes , which differentiate into macrophages, also function in phagocytosis and intracellular killing of microorganisms. In addition, macrophages are capable of extracellular killing of infected or altered self target cells. Furthermore, macrophages contribute to tissue repair and act as antigen-presenting cells, which are required for the induction of specific immune responses.

3. Natural killer (NK) and lymphokine activated killer (LAK) cells – NK and LAK cells can nonspecifically kill virus infected and tumor cells. These cells are not part of the inflammatory response but they are important in nonspecific immunity to viral infections and tumor surveillance. 

4. Eosinophils – Eosinophils  have proteins in granules that are effective in killing certain parasites.

Types of microscopy used in bacteriology

Light microscopy
Phase contrast microscopy
Fluorescence microscopy
Darkfield microscopy
Transmission electron microscopy
Scanning electron microscopy

Fluorescent microscopy in which ultraviolet rays are used to examine cells after treatment with fluorescent days.

Phase contrast microscope enhances the refractive index differences of the cell components. This microscopy can be used to reveal details of the internal structures as well as capsules, endospores and motility

Electron microscope The resolving power is more than 200 times that of light microscope.
 

NON-SPECIFIC KILLER CELLS

Several different cells including NK and LAK cells, K cells, activated macrophages and eosinophils are capable of killing foreign and altered self target cells in a non-specific manner. These cells play an important role in the innate immune system.

A. NK and LAK cells

Natural killer (NK) cells are also known as large granular lymphocytes (LGL) because they resemble lymphocytes in their morphology, except that they are slightly larger and have numerous granules.

NK cells can be identified by the presence of CD56 and CD16 and a lack of CD3 cell surface markers.

NK cells are capable of killing virus-infected and malignant target cells but they are relatively inefficient in doing so.

However, upon exposure to IL-2 and IFN-gamma, NK cells become lymphokine-activated killer (LAK) cells, which are capable of killing malignant cells.

Continued exposure to IL-2 and IFN-gamma enables the LAK cells to kill transformed as well as malignant cells. LAK cell therapy is one approach for the treatment of malignancies.

NK and LAK cells have two kinds of receptors on their surface – a killer activating receptor (KAR) and a killer inhibiting receptor (KIR). 

When the KAR encounters its ligand, a killer activating ligand (KAL) on the target cell the NK or LAK cells are capable of killing the target. However, if the KIR also binds to its ligand then killing is inhibited even if KAR binds to KAL. 

The ligands for KIR are MHC-class I molecules. Thus, if a target cell expresses class I MHC molecules it will not be killed by NK or LAK cells even if the target also has a KAL which could bind to KAR. 

Normal cells constitutively express MHC class I molecules on their surface, however, virus infected and malignant cells down regulate expression of class I MHC. Thus, NK and LAK cells selectively kill virus-infected and malignant cells while sparing normal cells.

B. K cells 

Killer (K) cells are not a morphologically distinct type of cell. Rather a K cell is any cell that mediates antibody-dependent cellular cytotoxicity (ADCC). 

In ADCC antibody acts as a link to bring the K cell and the target cell together to allow killing to occur. K cells have on their surface an Fc receptor for antibody and thus they can recognize, bind and kill target cells coated with antibody. 

Killer cells which have Fc receptors include NK, LAK, and macrophages which have an Fc receptor for IgG antibodies and eosinophils which have an Fc receptor for IgE antibodies.

Enzymes:

Serum lysozyme:

Provides innate & nonspecific immunity
Lysozyme is a hydrolytic enzyme capable of digesting bacterial cell walls containing peptidoglycan 
•    In the process of cell death, lysosomal NZs fxn mainly to aulolyse necrotic cells (NOT “mediate cell degradation”)
•    Attacks bacterial cells by breaking the bond between NAG and NAM.
•    Peptidoglycan – the rigid component of cell walls in most bacteria – not found in archaebacteria or eukaryotic cells
•    Lysozyme is found in serum, tears, saliva, egg whites & phagocytic cells protecting the host nonspecifically from microorganisms

Superoxide dismutase: catalyzes the destruction of O2 free radicals protecting O2-metabolizing cells against harmful effects 

Catalase:

- catalyzes the decomposition of H2O2 into H2O & O2
- Aerobic bacteria and facultative anaerobic w/ catalase are able to resist the effects of H2O2
- Anaerobic bacteria w/o catalase are sensitive to H2O2  (Peroxide), like Strep
- Anaerobic bacteria (obligate anaerobes) lack superoxide dismutase or catalase
- Staph makes catalase, where Strep does not have enough staff to make it

Coagulase

- Converts Fibronogen to fibrin
•    Coagulase test is the prime criterion for classifying a bug as Staph aureus – from other Staph species
•    Coagulase is important to the pathogenicity of S. aureus because it helps to establish the typical abscess lesion 
•    Coagulase also coats the surface w/ fibrin upon contact w/ blood, making it harder to phagocytize

Autoantibodies

Anti-nuclear antibodies (ANA)    Systemic Lupus
Anti-dsDNA, anti-Smith               Specific for Systemic Lupus
Anti-histone                                 Drug-induced Lupus
Anti-IgG                                       Rheumatoid arthritis
Anti-neutrophil                             Vasculitis
Anti-centromere                           Scleroderma (CREST)
Anti-Scl-70                                   Sclerderma (diffuse)
Anti-mitochondria                         1oary biliary cirrhosis
Anti-gliadin                                   Celiac disease
Anti-basement membrane            Goodpasture’s syndrome
Anti-epithelial cell                          Pemphigus vulgaris
Anti-microsomal                            Hashimoto’s thryoiditis

CELLS ORGANELLES

Cell parts:

Mitochondrion – double MB structure responsible for cellular metabolism – powerhouse of the cell

Nucleus – controls synthetic activities and stores genetic information

Ribosome – site of mRNA attachment and amino acid assembly, protein synthesis

Endoplasmic reticulum – functions in intracellular transportation

Gogli apparatus/complex – composed of membranous sacs – involved in production of large CHO molecules & lysosomes

Lysosome – organelle contains hydrolytic enzymes necessary for intracellular digestion

Membrane bag containing digestive enzymes

Cellular food digestion – lysosome MB fuses w/ MB of food vacuole & squirts the enzymes inside. Digested food diffuses through the vacuole MB to enter the cell to be used for energy or growth. Lysosome MB keeps the cell iself from being digested 

-Involved mostly in cells that like to phagocytose
-Involved in autolytic and digestive processes
-Formed when the Golgi complex packages up an especially large vesicle of digestive enzyme proteins

Phagosome 
– vesicle that forms around a particle (bacterial or other) w/in the phagocyte that engulfed it
- Then separates from the cell membrane bag & fuses w/ lysozome to receive contents
- This coupling forms phagolysosomes in which digestion of the engulfed particle occurs

Microbodies:
- Contain catalase
- Bounded by a single membrane bag
-  Compartments specialized for specific metabolic pathways
-  Similar in function to lysosomes, but are smaller & isolate metabolic reactions involving H2O2

-  Two general families:
·        Peroxisomes: transfer H2 to O2, producing H2O2 – generally not found in plants
·        Glyoxysomes: common in fat-storing tissues of the germinating seeds of plants
¨      Contain enzymes that convert fats to sugar to make the energy stored in the oils of the seed available

 Inclusions

– transitory, non-living metabolic byproducts found in the cytoplasm of the cell
- May appear as fat droplets, CHO accumulations, or engulfed foreign matter.

Precipitation Reaction

This reaction takes place only when antigen is in soluble form. Such an antigen when
comes in contact with specific antibody in a suitable medium results into formation of an insoluble complex which precipitates. This precipitate usually settles down at the bottom of the tube. If it fails to sediment and remains suspended as floccules the reaction is known as flocculation. Precipitation also requires optimal concentration of NaCl, suitable temperature and appropriate pH.

Zone Phenomenon

Precipitation occurs most rapidly and abundantly when antigen and antibody are in optimal proportions or equivalent ratio. This is also known as zone of equivalence. When antibody is in great excess, lot of antibody remains uncombined. This is called zone of antibody excess or prozone. Similarly a zone of antigen excess occurs in which all antibody has combined with antigen and additional uncombined antigen is present.

Applications of Precipitation Reactions

Both qualitative determination as well as quantitative estimation of antigen and antibody can be performed with precipitation tests. Detection of antigens has been found to be more sensitive.

Agglutination

In agglutination reaction the antigen is a part of the surface of some particulate material such as erythrocyte, bacterium or an inorganic particle e.g. polystyrene latex which has been coated with antigen. Antibody added to a suspension of such particles combines with the surface antigen and links them together to form clearly visible aggregate which is called as agglutination.

Application of precipitation reactions

Precipitation reaction            Example

Ring test                             Typing of streptococci, Typing of pneumococci 
Slide test (flocculation)       VDRL test
Tube test (flocculation)       Kahn test
Immunodiffusion                 Eleks test
Immunoelectrophoresis      Detection Of HBsAg, Cryptococcal antigen in CSF
 

Explore by Exams