NEET MDS Lessons
General Microbiology
CHEMICAL AGENTS
Chlorine and iodine are most useful disinfectant Iodine as a skin disinfectant and chlorine as a water disinfectant have given consistently magnificent results. Their activity is almost exclusively bactericidal and they are effective against sporulating organisms also.
Mixtures of various surface acting agents with iodine are known as iodophores and these are used for the sterilization of dairy products.
Apart from chlorine, hypochlorite, inorganic chioramines are all good disinfectants but they act by liberating chlorine.
Hydrogen peroxide in a 3% solution is a harmless but very weak disinfectant whose primary use is in the cleansing of the wound.
Potassium permanganate is another oxidising agent which is used in the treatment of urethntzs.
Formaldehyde — is one of the least selective agent acting on proteins. It is a gas that is usually employed as its 37% solution, formalin.
When used in sufficiently high concentration it destroys the bacteria and their spores.
Classification of chemical sterilizing agents
Chemical disinfectant
Interfere with membrane functions
• Surface acting agents : Quaternary ammonium, Compounds, Soaps and fatty acids
• Phenols : Phenol, cresol, Hexylresorcinol
• Organic solvent : Chloroform, Alcohol
Denatures proteins
• Acids and alkalies : Organic acids, Hydrochloric acid , Sulphuric acid
Destroy functional groups of proteins
• Heavy metals : Copper, silver , Mercury
• Oxidizing agents: Iodine, chlorine, Hydrogen peroxide
• Dyes : Acridine orange, Acriflavine
• Alkylating agents : Formaldehyde, Ethylene oxide
Applications and in-use dilution of chemical disinfectants
Alcohols : Skin antiseptic Surface disinfectant, Dilution used 70%
Mercurials : Skin antiseptic Surface disinfectant Dilution Used 0.1 %
Silver nitrate : Antiseptic (eyes and burns) Dilution Used 1 %
Phenolic compound : Antiseptic skin washes Dilution Used .5 -5 %
Iodine : Disinfects inanimate object, Skin antiseptic Dilution used 2%
Chlorine compounds : Water treatment Disinfect inanimate objects , Dillution used 5 %
Quaternary ammonium Compounds : Skin antiseptic , Disinfects inanimate object, Dilution Used < 1 %
Glutaraldehyde: Heat sensitve instruments, Dilution used 1-2 %
Cold sterilization can be achieved by dipping the precleaned instrument in 2% solution of gluteraldehyde for 15-20 minutes. This time is sufficient to kill the vegetative form as well as spores ofthe organisms that are commonly encountered in the dentistry.
Ethylene oxide is an a agent extensively used in gaseous sterilization. It is active against all kinds of bacteria and their spores. but its greatest utility is in sterilizing those objects which are damaged by heat (e.g. heart lung machine). It is also used to sterlise fragile, heat sensitive equipment, powders as well as components of space crafts.
Evaluation of Disinfectants
Two methods which are widely employed are:
Phenol coefficient test, Kelsey -Sykes test
These tests determine the capacity of disinfectant as well as their ability to retain their activity.
DISINFECTION AND STERILIZATION
• Sterilization is the best destruction or com removal_of all forms of micro organisms.
• Disinfection is the destruction of many microorganisms but usually the b spores.
• Antisepsis is the destruction or inhibition of microorganisms in living tissues thereby limiting or preventing the harmful effect of infection.
• Astatic Agent would only inhibit the growth of microorganisms (bacteriostatic, fungistatic, sporostatic).
• Acidal agent would kill the microorganism (bactericidal. virucidal, fungicidal)
• Sterilants are the chemicals which under controlled conditions can kill sporinQ bacteria.
Complement Fixation Test (CFT)
This test is based upon two properties of the complement viz:
a. Complent combines with all antigen-antibody complexes whether or not it is required for that reaction
b. Complement is needed in immunolytic reaction.
Test system
It contains an antigen and a serum suspected to be having antibody to that antigen. The serum is heat treated prior to the test to destroy its complement. Complement Is added in measured quantity to this system. This complement is the form of guinea pig serum which is considered a rich source of complement. The test system is incubated.
Indicator system
To test system, after incubation, is added the indicator system which consists of sheep
RBCs and antibody to sheep RBCs (haemolysin) and another incubation is allowed.
If there is specific antibody in the test system, it will bind to antigen and to this complex the complement will also get fixed. Hence, no complement will be available to combine with indicator system which though contains RBCs and their specific antibody, cannot undergo haemolysis unless complement gets attached. Absence of haemolysis shall indicated positive test or presence of specific antibody in the serum which has been added in the test system. Erythrocytes lysis is obtained in negative test.
Neutralization Test
These are basically of two types:
• Toxin neutralization
• Virus neutralization
In toxin neutralization homologous anti-bodies prevent the biological effect of toxin as observed in vivo in experimental animals (e.g. detection of toxin of Clostridia and Corynebacterium diphthenae) or by in vitro method (e.g. Nagler’s method).
In virus neutralization test various methods are available by which identity of virus can be established as well as antibody against a virus can be estimated.
COMPLEMENT
The complement system primarily serves to fight bacterial infections.
The complement system can be activated by at least three separate pathways.
1) alternative pathway -
- The alternative pathway of complement activation starts with the spontaneous hydroysis of an internal thioester bond in the plasma complement component C3 to result in C3(H2O).
- The smaller cleavage products C3a, C4a, C5a, sometimes called "anaphylatoxins", act as phagocytes, they cause mast cell degranulation and enhance vessel permeability, thereby facilitating access of plasma proteins and leukocytes to the site of infection
- alternative pathway provides a means of non-specific resistance against infection without the participation of antibodies and hence provides a first line of defense against a number of infectious agents.
2) Lecithin Pathway
The lectin pathway of complement activation exploits the fact that many bacterial surfaces contain mannose sugar molecules in a characteristic spacing. The oligomeric plasma protein mannan-binding lectin (MBL; lectins are proteins binding sugars) binds to such a pattern of mannose moieties, activating proteases MASP-1 and MASP-2 (MASP=MBL activated serine protease, similar in structure to C1r and C1s). These, by cleaving C4 and C2, generate a second type of C3 convertase consisting of C4b and C2b, with ensuing events identical to those of the alternative pathway.
3) classical pathway
The classical pathway usually starts with antigen-bound antibodies recruiting the C1q component, followed by binding and sequential activation of C1r and C1s serine proteases. C1s cleaves C4 and C2, with C4b and C2b forming the C3 convertase of the classical pathway. Yet, this pathway can also be activated in the absence of antibodies by the plasma protein CRP (C-reactive protein), which binds to bacterial surfaces and is able to activate C1q.
Pharmacology cross reference: humanized monoclonal antibody Eculizumab binds to complement component C5, inhibiting its cleavage and preventing activation of the lytic pathway. This is desirable when unwanted complement activation causes hemolysis, as in paroxysmal nocturnal hemoglobinuria or in some forms of hemolytic uremic syndrome. For the lytic pathway's importance in fighting meningococcal infections, Eculizumab treatment increases the risk of these infections, which may be prevented by previous vaccination.
BIOLOGICALLY ACTIVE PRODUCTS OF COMPLEMENT ACTIVATION
Activation of complement results in the production of several biologically active molecules which contribute to resistance, anaphylaxis and inflammation.
Kinin production
C2b generated during the classical pathway of C activation is a prokinin which becomes biologically active following enzymatic alteration by plasmin. Excess C2b production is prevented by limiting C2 activation by C1 inhibitor (C1-INH) also known as serpin which displaces C1rs from the C1qrs complex (Figure 10). A genetic deficiency of C1-INH results in an overproduction of C2b and is the cause of hereditary angioneurotic edema. This condition can be treated with Danazol which promotes C1-INH production or with ε-amino caproic acid which decreases plasmin activity.
Anaphylotoxins
C4a, C3a and C5a (in increasing order of activity) are all anaphylotoxins which cause basophil/mast cell degranulation and smooth muscle contraction. Undesirable effects of these peptides are controlled by carboxypeptidase B (C3a-INA).
Chemotactic Factors
C5a and MAC (C5b67) are both chemotactic. C5a is also a potent activator of neutrophils, basophils and macrophages and causes induction of adhesion molecules on vascular endothelial cells.
Opsonins
C3b and C4b in the surface of microorganisms attach to C-receptor (CR1) on phagocytic cells and promote phagocytosis.
Other Biologically active products of C activation
Degradation products of C3 (iC3b, C3d and C3e) also bind to different cells by distinct receptors and modulate their functions.
PHYSICAL AGENTS
Heat occupies the most important place as a physical agent.
Moist Heat : This is heating in the presence of water and can be employed in the following ways:
Temperature below 100°C: This includes holder method of Pasteurization where 60°C for 30 minutes is employed for sterilization and in its flash modification where in objects are subjected to a temperature of 71.1°C for 15 seconds. This method does not destroy spores.
Temperatures Around 100°C : Tyndallization is an example of this methodology in which steaming of the object is done for 30 minutes on each of three consecutive days. Spores which survive the heating process would germinate before the next thermal exposure and would then be killed.
Temperatures Above 100°C : Dry saturated steam acts as an excellent agent for sterilization. Autoclaves have been designed on the principles of moist heat.
Time-temperature relationship in heat sterilization
Moist heat (autoclaving)
121°C 15 minutes
126°C 10 minutes
134 C 3 minutes
Dry heat
>160°C >120 minutes
>170°C >60minutes
>180°C >30 minutes
Mechanism of microbial inactivation
The autoclaving is in use for the sterilization of many ophthalmic and parentral products. surgical dressings, rubber gloves, bacteriological media as well a of lab and hospital reusable goods.
Dry Heat: Less efficient, bacterial spores are most resistant. Spores may require a temperature of 140° C for three hours to get killed.
Dry heat sterilization is usually carried out by flaming as is done in microbiology laboratory to sterilize the inoculating loop and in hot air ovens in which a number of time-temperature combinations can be used. It is essential that hot air should circulate between the objects to be sterilized. Microbial inactivation by dry heat is primarily an oxidation process.
Dry heat is employed for sterilization of glassware glass syringes, oils and oily injections as well as metal instruments. -
Indicators of Sterilization:
These determine the efficacy of heat sterilization and can be in the form of spores of Bacillus stearothermophilus (killed at 121C in 12 minutes) or in the form of chemical indicators, autoclave tapes and thermocouples.
Ionizing Radiations
Ionizing radiations include X-rays, gamma rays and beta rays, and these induce defects in the microbial DNA synthesis is inhibited resulting in cell death. Spores are more resistant to ionizing radiations than nonsporulating bacteria.
The ionizing radiations are used for the sterilization of single use disposable medical items.
Mechanism of microbial inactivation by moist heat
Bacterial spores
• Denaturation of spore_epzymes
• Impairment of germination
• Damage to cell membrane
• Increased sensitivity to inhibitory agents
• Structural damage
• Damage to chromosome
Nonsporulating bacteria
• Damage to cytoplasmic membrane
• Breakdown of RNA
• Coagulation of proteins
• Damage to bacterial chromosome
Ultraviolet Radiations :
wave length 240-280 nm have been found to be most efficient in sterilizing. Bacterial spores are more resistant to U.V. rays than the vegetative forms. Even viruses are sometimes more resistant than vegetative bacteria.
Mechanism of Action :
Exposure to UV rays results in the formation of purine and pyrimidine diamers between adjacent molecules in the same strand of DNA. This results into noncoding lesions in DNA and bacterial death.
Used to disinfect drinking water, obtaining pyrogen free water, air disinfection (especially in safety laboratories, hospitals, operation theatres) and in places where dangerous microorganisms are being handled.
Filteration
Type of Filters
Various types of filters that are available are /
Unglazed ceramic filter (Chamberland and Doulton filters)
Asbestos filters (Seitz, Carlson and Sterimat filters)
Sintered glass filters
Membrane filters
Membrane filters are widely used now a days. Made up of cellulose ester and are most suitable for preparing_sterile solutions. The range of pore size in which these are available is 0.05-12 µm whereas the required pore size for sterlization is in range of 0.2-0.22 p.m.
Application of agglutination reactions
Agglutination reaction Example
Tube agglutination -> Widal test, Weil Felix reaction, Standard tube test for brucellosis
Slide agglutination -> Typing of pneumococci,Diagnosis of Salmonella,Diagnosis of Shigella
Agglutination Absorption test -> Salmonella diagnosis
Coagglutination -> Grouping of streptococci, Identification of gonococci, Detection of Haemophilus, Antigen in CSF
Passive agglutination
Latex agglutination Detection of HBs Ag, ASO, CRP