NEET MDS Lessons
General Microbiology
Autoantibodies
Anti-nuclear antibodies (ANA) Systemic Lupus
Anti-dsDNA, anti-Smith Specific for Systemic Lupus
Anti-histone Drug-induced Lupus
Anti-IgG Rheumatoid arthritis
Anti-neutrophil Vasculitis
Anti-centromere Scleroderma (CREST)
Anti-Scl-70 Sclerderma (diffuse)
Anti-mitochondria 1oary biliary cirrhosis
Anti-gliadin Celiac disease
Anti-basement membrane Goodpasture’s syndrome
Anti-epithelial cell Pemphigus vulgaris
Anti-microsomal Hashimoto’s thryoiditis
CELLS ORGANELLES
Cell parts:
Mitochondrion – double MB structure responsible for cellular metabolism – powerhouse of the cell
Nucleus – controls synthetic activities and stores genetic information
Ribosome – site of mRNA attachment and amino acid assembly, protein synthesis
Endoplasmic reticulum – functions in intracellular transportation
Gogli apparatus/complex – composed of membranous sacs – involved in production of large CHO molecules & lysosomes
Lysosome – organelle contains hydrolytic enzymes necessary for intracellular digestion
Membrane bag containing digestive enzymes
Cellular food digestion – lysosome MB fuses w/ MB of food vacuole & squirts the enzymes inside. Digested food diffuses through the vacuole MB to enter the cell to be used for energy or growth. Lysosome MB keeps the cell iself from being digested
-Involved mostly in cells that like to phagocytose
-Involved in autolytic and digestive processes
-Formed when the Golgi complex packages up an especially large vesicle of digestive enzyme proteins
Phagosome
– vesicle that forms around a particle (bacterial or other) w/in the phagocyte that engulfed it
- Then separates from the cell membrane bag & fuses w/ lysozome to receive contents
- This coupling forms phagolysosomes in which digestion of the engulfed particle occurs
Microbodies:
- Contain catalase
- Bounded by a single membrane bag
- Compartments specialized for specific metabolic pathways
- Similar in function to lysosomes, but are smaller & isolate metabolic reactions involving H2O2
- Two general families:
· Peroxisomes: transfer H2 to O2, producing H2O2 – generally not found in plants
· Glyoxysomes: common in fat-storing tissues of the germinating seeds of plants
¨ Contain enzymes that convert fats to sugar to make the energy stored in the oils of the seed available
Inclusions
– transitory, non-living metabolic byproducts found in the cytoplasm of the cell
- May appear as fat droplets, CHO accumulations, or engulfed foreign matter.
THE PLASMIDS
The extrachromosomal genetic elements, called as plasmids are autonomously replicating , cyclic ,double stranded DNA molecules which are distinct from the cellular chromosome
Classification
Plasmids can be broadly classified as conjugative and nonconjugative.
Conjugative plasmids are large and self-transmissible i.e. they have an apparatus through which they can mediate their own transfer to another cell after coming in contact with the same. Example: RF and certain bacteriocinogen plasmids.
Nonconjugative plasmids are small in size and can be mobilised for transfer into another cell only through the help of a conjugative plasmid. To this group belong some ‘r’ determinants and few bacteriocinogenic plasmids. Plasmids can also be transferred without cell contact by the process of transfection.
Properties of plasmids
Double stranded DNA , Autonomously replicate in host cell, Plasmd specific, Free DNA is transferred b transfection
Significance of Plasmids :The spread of resistance to antibiotics is one such well known example. These also play an important role in the geochemical cycle by spreading genes for the degradation of complex organic compounds.
DISINFECTION AND STERILIZATION
• Sterilization is the best destruction or com removal_of all forms of micro organisms.
• Disinfection is the destruction of many microorganisms but usually the b spores.
• Antisepsis is the destruction or inhibition of microorganisms in living tissues thereby limiting or preventing the harmful effect of infection.
• Astatic Agent would only inhibit the growth of microorganisms (bacteriostatic, fungistatic, sporostatic).
• Acidal agent would kill the microorganism (bactericidal. virucidal, fungicidal)
• Sterilants are the chemicals which under controlled conditions can kill sporinQ bacteria.
The cell cycle
1) Labile cells (GI tract, blood cells)
- Described as parenchymal cells that are normally found in the G0 phase that can be stimulated to enter the G1
- Undergo continuous replication, and the interval between two consecutive mitoses is designated as the cell cycle
- After division, the cells enter a gap phase (G1), in which they pursue their own specialized activities
• If they continue in the cycle, after passing the restriction point (R), they are committed to a new round of division
• The G1 phase is followed by a period of nuclear DNA synthesis (S) in which all chromosomes are replicated
• The S phase is followed by a short gap phase (G2) and then by mitosis
• After each cycle, one daughter cell will become committed to differentiation, and the other will continue cycling
2) Stable cells (Hepatocytes, Kidney)
- After mitosis, the cells take up their specialized functions (G0).
- They do not re-enter the cycle unless stimulated by the loss of other cells
3) Permanent cells (neurons)
- Become terminally differentiated after mitosis and cannot re-enter the cell cycle
- Which cells do not have the ability to differentiate -> Cardiac myocytes
NUTRITION OF BACTERIA
Nutrients
Chemoheterotrophs: nutrient source is organic material
Bacteria also requires a source of minerals.
Oxygen
On this basis bacteria have been divided into four groups.
Obligate Anaerobes: These grow only under conditions of high reducing intensity. These bacteria catalase peroxidase, superoxide dismutase and cytochrome systems
Clostridium and Bacteroides are important examples.
Facultalive Anaerobes. These can grow under both aerobic and anaerobic conditions and include members of family enterobacteriaceae and many other bacteria.
Obligatory Aerobes. These cannot grow unless oxygen is present in the medium. Pseudomonas belong to this group.
Microaerophillic. These organisms can grow under conditions with low oxygen tension. Clostridium tetani is an important example.
The strict anaerobes are unable to grow unless Eh is as low as 0.2 volt
Temperature
• On the basis of temperature requirements, three groups of bacteria are recognised.
• Psychrophilic : Growth in the range of —5 to 30°C with an optimum of 10-20
• Mesophillic : bacteria grow best at 20-40°C with a range of 10-45°C.
• Medically important bacteria belong to this group
• Myco. leprae is one such important example and it can grow only at reduced temperature such as footpad of mouse
• Thermophillic organisms prefer high temperature (25-80°C) for growth and yield maximum growth at 50-60°C
pH : Most pathogenic bacteria require a pH of 7.2-7.6 for their own optimal growth.