NEET MDS Lessons
General Microbiology
Variant Forms of Bacteria
Prortoplast ; surface is completely devoid of cell wall component,
Spheroplast : Some residual cell wall component is present
Autoplast: protoplasts which are produced by the action of organisms’ own autolytic enzymes.
L Form: replicate as pleomorphic filtrable elements with defective or no cell wall These are designated as L forms after the Lister Institute where these were discovered by Klineberger-Nobel.
Bacterial Spores: Gram positive bacilli and actinomycetes form highly resistant and dehydrated forms which are called as endospores. The surrounding mother.cell which give rise to them is known as Sporangium. These endospores are capable of survival under adverse conditions
Structure :smooth walled and ovoid or spherical.
In bacilli, spores usually fit into the normal cell diameter except in Clostridium where these may cause a terminal bulge. (drum stick ) or central. , these look like areas of high refractilitv under light microscope.
Germination : This is the process of converting a spore into the vegetative cell. It occurs in less than 2 hours and has three stages:Activation, Germination, Outgrowth
PHAGOCYTOSIS AND INTRACELLULAR KILLING
A. Phagocytic cells
1. Neutrophiles/Polymorphonuclear cells
PMNs are motile phagocytic cells that have lobed nuclei. They can be identified by their characteristic nucleus or by an antigen present on the cell surface called CD66. They contain two kinds of granules the contents of which are involved in the antimicrobial properties of these cells.
The second type of granule found in more mature PMNs is the secondary or specific granule. These contain lysozyme, NADPH oxidase components, which are involved in the generation of toxic oxygen products, and characteristically lactoferrin, an iron chelating protein and B12-binding protein.
2. Monocytes/Macrophages
Macrophages are phagocytic cells . They can be identified morphologically or by the presence of the CD14 cell surface marker.
B. Response of phagocytes to infection
Circulating PMNs and monocytes respond to danger (SOS) signals generated at the site of an infection. SOS signals include N-formyl-methionine containing peptides released by bacteria, clotting system peptides, complement products and cytokines released from tissue macrophages that have encountered bacteria in tissue.
Some of the SOS signals stimulate endothelial cells near the site of the infection to express cell adhesion molecules such as ICAM-1 and selectins which bind to components on the surface of phagocytic cells and cause the phagocytes to adhere to the endothelium.
Vasodilators produced at the site of infection cause the junctions between endothelial cells to loosen and the phagocytes then cross the endothelial barrier by “squeezing” between the endothelial cells in a process called diapedesis.
Once in the tissue spaces some of the SOS signals attract phagocytes to the infection site by chemotaxis (movement toward an increasing chemical gradient). The SOS signals also activate the phagocytes, which results in increased phagocytosis and intracellular killing of the invading organisms.
C. Initiation of Phagocytosis
Phagocytic cells have a variety of receptors on their cell membranes through which infectious agents bind to the cells. These include:
1. Fc receptors – Bacteria with IgG antibody on their surface have the Fc region exposed and this part of the Ig molecule can bind to the receptor on phagocytes. Binding to the Fc receptor requires prior interaction of the antibody with an antigen. Binding of IgG-coated bacteria to Fc receptors results in enhanced phagocytosis and activation of the metabolic activity of phagocytes (respiratory burst).
2. Complement receptors – Phagocytic cells have a receptor for the 3rd component of complement, C3b. Binding of C3b-coated bacteria to this receptor also results in enhanced phagocytosis and stimulation of the respiratory burst.
3. Scavenger receptors – Scavenger receptors bind a wide variety of polyanions on bacterial surfaces resulting in phagocytosis of bacteria.
4. Toll-like receptors – Phagocytes have a variety of Toll-like receptors (Pattern Recognition Receptors or PRRs) which recognize broad molecular patterns called PAMPs (pathogen associated molecular patterns) on infectious agents. Binding of infectious agents via Toll-like receptors results in phagocytosis and the release of inflammatory cytokines (IL-1, TNF-alpha and IL-6) by the phagocytes.
D. Phagocytosis
The pseudopods eventually surround the bacterium and engulf it, and the bacterium is enclosed in a phagosome. During phagocytosis the granules or lysosomes of the phagocyte fuse with the phagosome and empty their contents. The result is a bacterium engulfed in a phagolysosome which contains the contents of the granules or lysosomes.
E. Respiratory burst and intracellular killing
During phagocytosis there is an increase in glucose and oxygen consumption which is referred to as the respiratory burst. The consequence of the respiratory burst is that a number of oxygen-containing compounds are produced which kill the bacteria being phagocytosed. This is referred to as oxygen-dependent intracellular killing. In addition, bacteria can be killed by pre-formed substances released from granules or lysosomes when they fuse with the phagosome. This is referred to as oxygen-independent intracellular killing.
1. Oxygen-dependent myeloperoxidase-independent intracellular killing
During phagocytosis glucose is metabolized via the pentose monophosphate shunt and NADPH is formed. Cytochrome B which was part of the specific granule combines with the plasma membrane NADPH oxidase and activates it. The activated NADPH oxidase uses oxygen to oxidize the NADPH. The result is the production of superoxide anion. Some of the superoxide anion is converted to H2O2 and singlet oxygen by superoxide dismutase. In addition, superoxide anion can react with H2O2 resulting in the formation of hydroxyl radical and more singlet oxygen. The result of all of these reactions is the production of the toxic oxygen compounds superoxide anion (O2-), H2O2, singlet oxygen (1O2) and hydroxyl radical (OH•).
2. Oxygen-dependent myeloperoxidase-dependent intracellular killing
As the azurophilic granules fuse with the phagosome, myeloperoxidase is released into the phagolysosome. Myeloperoxidase utilizes H2O2 and halide ions (usually Cl-) to produce hypochlorite, a highly toxic substance. Some of the hypochlorite can spontaneously break down to yield singlet oxygen. The result of these reactions is the production of toxic hypochlorite (OCl-) and singlet oxygen (1O2).
3. Detoxification reactions
PMNs and macrophages have means to protect themselves from the toxic oxygen intermediates. These reactions involve the dismutation of superoxide anion to hydrogen peroxide by superoxide dismutase and the conversion of hydrogen peroxide to water by catalase.
4. Oxygen-independent intracellular killing
In addition to the oxygen-dependent mechanisms of killing there are also oxygen–independent killing mechanisms in phagocytes: cationic proteins (cathepsin) released into the phagolysosome can damage bacterial membranes; lysozyme breaks down bacterial cell walls; lactoferrin chelates iron, which deprives bacteria of this required nutrient; hydrolytic enzymes break down bacterial proteins. Thus, even patients who have defects in the oxygen-dependent killing pathways are able to kill bacteria. However, since the oxygen-dependent mechanisms are much more efficient in killing, patients with defects in these pathways are more susceptible and get more serious infections.
PHYSICAL AGENTS
Heat occupies the most important place as a physical agent.
Moist Heat : This is heating in the presence of water and can be employed in the following ways:
Temperature below 100°C: This includes holder method of Pasteurization where 60°C for 30 minutes is employed for sterilization and in its flash modification where in objects are subjected to a temperature of 71.1°C for 15 seconds. This method does not destroy spores.
Temperatures Around 100°C : Tyndallization is an example of this methodology in which steaming of the object is done for 30 minutes on each of three consecutive days. Spores which survive the heating process would germinate before the next thermal exposure and would then be killed.
Temperatures Above 100°C : Dry saturated steam acts as an excellent agent for sterilization. Autoclaves have been designed on the principles of moist heat.
Time-temperature relationship in heat sterilization
Moist heat (autoclaving)
121°C 15 minutes
126°C 10 minutes
134 C 3 minutes
Dry heat
>160°C >120 minutes
>170°C >60minutes
>180°C >30 minutes
Mechanism of microbial inactivation
The autoclaving is in use for the sterilization of many ophthalmic and parentral products. surgical dressings, rubber gloves, bacteriological media as well a of lab and hospital reusable goods.
Dry Heat: Less efficient, bacterial spores are most resistant. Spores may require a temperature of 140° C for three hours to get killed.
Dry heat sterilization is usually carried out by flaming as is done in microbiology laboratory to sterilize the inoculating loop and in hot air ovens in which a number of time-temperature combinations can be used. It is essential that hot air should circulate between the objects to be sterilized. Microbial inactivation by dry heat is primarily an oxidation process.
Dry heat is employed for sterilization of glassware glass syringes, oils and oily injections as well as metal instruments. -
Indicators of Sterilization:
These determine the efficacy of heat sterilization and can be in the form of spores of Bacillus stearothermophilus (killed at 121C in 12 minutes) or in the form of chemical indicators, autoclave tapes and thermocouples.
Ionizing Radiations
Ionizing radiations include X-rays, gamma rays and beta rays, and these induce defects in the microbial DNA synthesis is inhibited resulting in cell death. Spores are more resistant to ionizing radiations than nonsporulating bacteria.
The ionizing radiations are used for the sterilization of single use disposable medical items.
Mechanism of microbial inactivation by moist heat
Bacterial spores
• Denaturation of spore_epzymes
• Impairment of germination
• Damage to cell membrane
• Increased sensitivity to inhibitory agents
• Structural damage
• Damage to chromosome
Nonsporulating bacteria
• Damage to cytoplasmic membrane
• Breakdown of RNA
• Coagulation of proteins
• Damage to bacterial chromosome
Ultraviolet Radiations :
wave length 240-280 nm have been found to be most efficient in sterilizing. Bacterial spores are more resistant to U.V. rays than the vegetative forms. Even viruses are sometimes more resistant than vegetative bacteria.
Mechanism of Action :
Exposure to UV rays results in the formation of purine and pyrimidine diamers between adjacent molecules in the same strand of DNA. This results into noncoding lesions in DNA and bacterial death.
Used to disinfect drinking water, obtaining pyrogen free water, air disinfection (especially in safety laboratories, hospitals, operation theatres) and in places where dangerous microorganisms are being handled.
Filteration
Type of Filters
Various types of filters that are available are /
Unglazed ceramic filter (Chamberland and Doulton filters)
Asbestos filters (Seitz, Carlson and Sterimat filters)
Sintered glass filters
Membrane filters
Membrane filters are widely used now a days. Made up of cellulose ester and are most suitable for preparing_sterile solutions. The range of pore size in which these are available is 0.05-12 µm whereas the required pore size for sterlization is in range of 0.2-0.22 p.m.
Autoantibodies
Anti-nuclear antibodies (ANA) Systemic Lupus
Anti-dsDNA, anti-Smith Specific for Systemic Lupus
Anti-histone Drug-induced Lupus
Anti-IgG Rheumatoid arthritis
Anti-neutrophil Vasculitis
Anti-centromere Scleroderma (CREST)
Anti-Scl-70 Sclerderma (diffuse)
Anti-mitochondria 1oary biliary cirrhosis
Anti-gliadin Celiac disease
Anti-basement membrane Goodpasture’s syndrome
Anti-epithelial cell Pemphigus vulgaris
Anti-microsomal Hashimoto’s thryoiditis
NORMAL MICROBIAL FLORA
A. Properties. Normal microbial flora describes the population of microorganisms that usually reside in the body. The microbiological flora can be defined as either
1) Resident flora - A relatively fixed population that will repopulate if disturbed,
2) Transient flora - that are derived from the local environment. These microbes usually reside in the body without invasion and can
even prevent infection by more pathogenic organisms, a phenomenon known as bacterial interference.
The flora have commensal functions such as vitamin K synthesis. However, they may cause invasive disease in immunocompromised hosts or if displaced from their normal area.
B. Location. Microbial flora differ in composition depending on their anatomical locations and microenvironments. The distribution of normal microbial flora.
Complement Fixation Test (CFT)
This test is based upon two properties of the complement viz:
a. Complent combines with all antigen-antibody complexes whether or not it is required for that reaction
b. Complement is needed in immunolytic reaction.
Test system
It contains an antigen and a serum suspected to be having antibody to that antigen. The serum is heat treated prior to the test to destroy its complement. Complement Is added in measured quantity to this system. This complement is the form of guinea pig serum which is considered a rich source of complement. The test system is incubated.
Indicator system
To test system, after incubation, is added the indicator system which consists of sheep
RBCs and antibody to sheep RBCs (haemolysin) and another incubation is allowed.
If there is specific antibody in the test system, it will bind to antigen and to this complex the complement will also get fixed. Hence, no complement will be available to combine with indicator system which though contains RBCs and their specific antibody, cannot undergo haemolysis unless complement gets attached. Absence of haemolysis shall indicated positive test or presence of specific antibody in the serum which has been added in the test system. Erythrocytes lysis is obtained in negative test.