NEET MDS Lessons
General Microbiology
Test for Antigen - Antibody Reactions
Antigens are those substance that stimulates the production of antibodies which, when enter into the body it reacts specifically in a manner that are clearly visible.
Some antigens may not induce antibody production, but instead creates immunological tolerance.
An antigen introduced into the body produces only specific antibodies and will react with only those specific antigens.
These antibodies appear in the serum and tissue fluids. All antibodies are considered as immunoglobulin. They are mainly of five classes; IgG, IgA, IgM, IgD and IgE.
Antigen- antibody reactions are known as serological reactions and are used as serological diagnostic tests for the identification of infectious diseases.
The reaction occurs mainly in three stages;
1. The initial interaction between the antigen and antibody, which produces no visible effects. It is a reversible and rapid reaction.
2. The secondary stage leads to the demonstration proceedings, such as precipitation, agglutination, etc.
3. The tertiary reaction follows the neutralization or destruction of injurious antigens. These results in clinical allergy and other immunological diseases.
There are certain characteristics for antigen-antibody reactions;
1. Reaction is specific.
2. The whole molecules participate in the reaction, and not just a part of it.
3. No denaturation of antigen or antibody occurs during the reaction.
4. The combination usually occurs at the surface.
5. The combination is firm, but reversible
6. Agglutinins formed after agglutination usually are formed by both antigen and antibody together.
7. They can combine in varying proportions.
Measurement of antigen and antibody are made in terms of mass or as units or titre.
Serological reactions include;
1. Precipitation reaction
a soluble antigen combining with the specific antibody in the presence of electrolytes at a suitable temperature and pH forming insoluble precipitins. Commonly used tests are ring test, slide test, tube test, immunodiffusion, etc.
Radial Immunodiffusion
In radial immunodiffusion antibody is incorporated into the agar gel as it is poured and different dilutions of the antigen are placed in holes punched into the agar. As the antigen diffuses into the gel, it reacts with the antibody and when the equivalence point is reached a ring of precipitation is formed .
This test is commonly used in the clinical laboratory for the determination of immunoglobulin levels in patient samples.
Immunoelectrophoresis
In immunoelectrophoresis, a complex mixture of antigens is placed in a well punched out of an agar gel and the antigens are electrophoresed so that the antigen are separated according to their charge. After electrophoresis, a trough is cut in the gel and antibodies are added. As the antibodies diffuse into the agar, precipitin lines are produced in the equivalence zone when an antigen/antibody reaction occurs .
This tests is used for the qualitative analysis of complex mixtures of antigens
This test can also be used to evaluate purity of isolated serum proteins.
Countercurrent electrophoresis
In this test the antigen and antibody are placed in wells punched out of an agar gel and the antigen and antibody are electrophoresed into each other where they form a precipitation line.
2. Agglutination reaction
when a particulate antigen is mixed with its antibody in the presence of electrolytes at a suitable temperature and pH, the particles are clumped or agglutinated. When the antigen is an erythrocyte the term hemagglutination is used.
Applications of agglutination tests
i. Determination of blood types or antibodies to blood group antigens.
ii. To assess bacterial infections
e.g. A rise in titer of an antibody to a particular bacterium indicates an infection with that bacterial type. N.B. a fourfold rise in titer is generally taken as a significant rise in antibody titer.
Passive hemagglutination
The agglutination test only works with particulate antigens. However, it is possible to coat erythrocytes with a soluble antigen (e.g. viral antigen, a polysaccharide or a hapten) and use the coated red blood cells in an agglutination test for antibody to the soluble antigen . This is called passive hemagglutination.
The test is performed just like the agglutination test.
Applications include detection of antibodies to soluble antigens and detection of antibodies to viral antigens.
Coomb's Test (Antiglobulin Test)
DIRECT ANTIGLOBULIN TEST (DAT)
The DAT is used to detect IgG or C3 bound to the surface of the red cell. In patients with hemolysis, the DAT is useful in determining whether there is an immune etiology.
A positive DAT can occur without hemolysis
Immune causes of hemolysis including autoimmune hemolytic anemias, drug induced hemolysis, and delayed or acute hemolytic transfusion reactions are characterized by a positive DAT.
INDIRECT ANTIGLOBULIN TEST (IAT)
The IAT (antibody screen) is performed by incubating patient serum with reagent screening red cells for approximately 20 minutes and then observing for agglutination. If the antibody screen is positive, additional testing is required to determine the specificity of the antibody.
The IAT is used to detect red cell antibodies in patient serum. Approximately 5% of patients have a positive IAT due to IgG antibodies, IgM antibodies, or both.
3. Complement fixation test (CFT)
the ability of antigen antibody complexes to fix complement is made use in this test. Complement is something which takes part in any immunological reaction and absorbed during the combining of antigen with its specific antibody.
The best example of CFT is the Wassermann reaction done for the detection of Syphilis.
4. Neutralization test
different types of these are available. Virus neutralization, toxin neutralization, etc. are some of its kind.
5. Opsonization
this makes use of the determination of opsonic index, which is the ratio of the phagocytic activity of patient’s blood to the phagocytic activity of the normal patient’s for a given bacterium.
6. Immunfluorescence
the method of labeling the antibodies with fluorescent dyes and using them for the detection of antigens in tissues.
7. Radioimmunoassay (RIA)
is a competitive binding radioisotopes and enzymes are used as labels to conjugate with antigens or antibodies.
8. Enzyme Immuno Assay (EIA)
the assays based on the measurement of enzyme labeled antigen or antibody. The most common example is ELISA used to detect HIV.
9. Immunoelectroblot
it uses the sensitivity of Enzyme immunoassay with a greater specificity. Example is Western blot done for the serodiagnosis of HIV infection.
COMPLEMENT
The complement system primarily serves to fight bacterial infections.
The complement system can be activated by at least three separate pathways.
1) alternative pathway -
- The alternative pathway of complement activation starts with the spontaneous hydroysis of an internal thioester bond in the plasma complement component C3 to result in C3(H2O).
- The smaller cleavage products C3a, C4a, C5a, sometimes called "anaphylatoxins", act as phagocytes, they cause mast cell degranulation and enhance vessel permeability, thereby facilitating access of plasma proteins and leukocytes to the site of infection
- alternative pathway provides a means of non-specific resistance against infection without the participation of antibodies and hence provides a first line of defense against a number of infectious agents.
2) Lecithin Pathway
The lectin pathway of complement activation exploits the fact that many bacterial surfaces contain mannose sugar molecules in a characteristic spacing. The oligomeric plasma protein mannan-binding lectin (MBL; lectins are proteins binding sugars) binds to such a pattern of mannose moieties, activating proteases MASP-1 and MASP-2 (MASP=MBL activated serine protease, similar in structure to C1r and C1s). These, by cleaving C4 and C2, generate a second type of C3 convertase consisting of C4b and C2b, with ensuing events identical to those of the alternative pathway.
3) classical pathway
The classical pathway usually starts with antigen-bound antibodies recruiting the C1q component, followed by binding and sequential activation of C1r and C1s serine proteases. C1s cleaves C4 and C2, with C4b and C2b forming the C3 convertase of the classical pathway. Yet, this pathway can also be activated in the absence of antibodies by the plasma protein CRP (C-reactive protein), which binds to bacterial surfaces and is able to activate C1q.
Pharmacology cross reference: humanized monoclonal antibody Eculizumab binds to complement component C5, inhibiting its cleavage and preventing activation of the lytic pathway. This is desirable when unwanted complement activation causes hemolysis, as in paroxysmal nocturnal hemoglobinuria or in some forms of hemolytic uremic syndrome. For the lytic pathway's importance in fighting meningococcal infections, Eculizumab treatment increases the risk of these infections, which may be prevented by previous vaccination.
BIOLOGICALLY ACTIVE PRODUCTS OF COMPLEMENT ACTIVATION
Activation of complement results in the production of several biologically active molecules which contribute to resistance, anaphylaxis and inflammation.
Kinin production
C2b generated during the classical pathway of C activation is a prokinin which becomes biologically active following enzymatic alteration by plasmin. Excess C2b production is prevented by limiting C2 activation by C1 inhibitor (C1-INH) also known as serpin which displaces C1rs from the C1qrs complex (Figure 10). A genetic deficiency of C1-INH results in an overproduction of C2b and is the cause of hereditary angioneurotic edema. This condition can be treated with Danazol which promotes C1-INH production or with ε-amino caproic acid which decreases plasmin activity.
Anaphylotoxins
C4a, C3a and C5a (in increasing order of activity) are all anaphylotoxins which cause basophil/mast cell degranulation and smooth muscle contraction. Undesirable effects of these peptides are controlled by carboxypeptidase B (C3a-INA).
Chemotactic Factors
C5a and MAC (C5b67) are both chemotactic. C5a is also a potent activator of neutrophils, basophils and macrophages and causes induction of adhesion molecules on vascular endothelial cells.
Opsonins
C3b and C4b in the surface of microorganisms attach to C-receptor (CR1) on phagocytic cells and promote phagocytosis.
Other Biologically active products of C activation
Degradation products of C3 (iC3b, C3d and C3e) also bind to different cells by distinct receptors and modulate their functions.
INNATE (NON-SPECIFIC) IMMUNITY
The elements of the innate (non-specific) immune system include anatomical barriers, secretory molecules and cellular components.
Among the mechanical anatomical barriers are the skin and internal epithelial layers, the movement of the intestines and the oscillation of broncho-pulmonary cilia.
Associated with these protective surfaces are chemical and biological agents.
A. Anatomical barriers to infections
1. Mechanical factors
The epithelial surfaces form a physical barrier that is very impermeable to most infectious agents. Thus, the skin acts as our first line of defense against invading organisms. The desquamation of skin epithelium also helps remove bacteria and other infectious agents that have adhered to the epithelial surfaces.
2. Chemical factors
Fatty acids in sweat inhibit the growth of bacteria. Lysozyme and phospholipase found in tears, saliva and nasal secretions can breakdown the cell wall of bacteria and destabilize bacterial membranes. The low pH of sweat and gastric secretions prevents growth of bacteria. Defensins (low molecular weight proteins) found in the lung and gastrointestinal tract have antimicrobial activity. Surfactants in the lung act as opsonins (substances that promote phagocytosis of particles by phagocytic cells).
3. Biological factors
The normal flora of the skin and in the gastrointestinal tract can prevent the colonization of pathogenic bacteria by secreting toxic substances or by competing with pathogenic bacteria for nutrients or attachment to cell surfaces.
B. Humoral barriers to infection
Humoral factors play an important role in inflammation, which is characterized by edema and the recruitment of phagocytic cells. These humoral factors are found in serum or they are formed at the site of infection.
1. Complement system – The complement system is the major humoral non-specific defense mechanism (see complement chapter). Once activated complement can lead to increased vascular permeability, recruitment of phagocytic cells, and lysis and opsonization of bacteria.
2. Coagulation system – Depending on the severity of the tissue injury, the coagulation system may or may not be activated. Some products of the coagulation system can contribute to the non-specific defenses because of their ability to increase vascular permeability and act as chemotactic agents for phagocytic cells. In addition, some of the products of the coagulation system are directly antimicrobial. For example, beta-lysin, a protein produced by platelets during coagulation can lyse many Gram positive bacteria by acting as a cationic detergent.
3. Lactoferrin and transferrin – By binding iron, an essential nutrient for bacteria, these proteins limit bacterial growth.
4. Interferons – Interferons are proteins that can limit virus replication in cells.
5. Lysozyme – Lysozyme breaks down the cell wall of bacteria.
6. Interleukin -1 – Il-1 induces fever and the production of acute phase proteins, some of which are antimicrobial because they can opsonize bacteria.
C. Cellular barriers to infection
Part of the inflammatory response is the recruitment of polymorphonuclear eosinophiles and macrophages to sites of infection. These cells are the main line of defense in the non-specific immune system.
1. Neutrophils – Polymorphonuclear cells are recruited to the site of infection where they phagocytose invading organisms and kill them intracellularly. In addition, PMNs contribute to collateral tissue damage that occurs during inflammation.
2. Macrophages – Tissue macrophages and newly recruited monocytes , which differentiate into macrophages, also function in phagocytosis and intracellular killing of microorganisms. In addition, macrophages are capable of extracellular killing of infected or altered self target cells. Furthermore, macrophages contribute to tissue repair and act as antigen-presenting cells, which are required for the induction of specific immune responses.
3. Natural killer (NK) and lymphokine activated killer (LAK) cells – NK and LAK cells can nonspecifically kill virus infected and tumor cells. These cells are not part of the inflammatory response but they are important in nonspecific immunity to viral infections and tumor surveillance.
4. Eosinophils – Eosinophils have proteins in granules that are effective in killing certain parasites.
PHAGOCYTOSIS AND INTRACELLULAR KILLING
A. Phagocytic cells
1. Neutrophiles/Polymorphonuclear cells
PMNs are motile phagocytic cells that have lobed nuclei. They can be identified by their characteristic nucleus or by an antigen present on the cell surface called CD66. They contain two kinds of granules the contents of which are involved in the antimicrobial properties of these cells.
The second type of granule found in more mature PMNs is the secondary or specific granule. These contain lysozyme, NADPH oxidase components, which are involved in the generation of toxic oxygen products, and characteristically lactoferrin, an iron chelating protein and B12-binding protein.
2. Monocytes/Macrophages
Macrophages are phagocytic cells . They can be identified morphologically or by the presence of the CD14 cell surface marker.
B. Response of phagocytes to infection
Circulating PMNs and monocytes respond to danger (SOS) signals generated at the site of an infection. SOS signals include N-formyl-methionine containing peptides released by bacteria, clotting system peptides, complement products and cytokines released from tissue macrophages that have encountered bacteria in tissue.
Some of the SOS signals stimulate endothelial cells near the site of the infection to express cell adhesion molecules such as ICAM-1 and selectins which bind to components on the surface of phagocytic cells and cause the phagocytes to adhere to the endothelium.
Vasodilators produced at the site of infection cause the junctions between endothelial cells to loosen and the phagocytes then cross the endothelial barrier by “squeezing” between the endothelial cells in a process called diapedesis.
Once in the tissue spaces some of the SOS signals attract phagocytes to the infection site by chemotaxis (movement toward an increasing chemical gradient). The SOS signals also activate the phagocytes, which results in increased phagocytosis and intracellular killing of the invading organisms.
C. Initiation of Phagocytosis
Phagocytic cells have a variety of receptors on their cell membranes through which infectious agents bind to the cells. These include:
1. Fc receptors – Bacteria with IgG antibody on their surface have the Fc region exposed and this part of the Ig molecule can bind to the receptor on phagocytes. Binding to the Fc receptor requires prior interaction of the antibody with an antigen. Binding of IgG-coated bacteria to Fc receptors results in enhanced phagocytosis and activation of the metabolic activity of phagocytes (respiratory burst).
2. Complement receptors – Phagocytic cells have a receptor for the 3rd component of complement, C3b. Binding of C3b-coated bacteria to this receptor also results in enhanced phagocytosis and stimulation of the respiratory burst.
3. Scavenger receptors – Scavenger receptors bind a wide variety of polyanions on bacterial surfaces resulting in phagocytosis of bacteria.
4. Toll-like receptors – Phagocytes have a variety of Toll-like receptors (Pattern Recognition Receptors or PRRs) which recognize broad molecular patterns called PAMPs (pathogen associated molecular patterns) on infectious agents. Binding of infectious agents via Toll-like receptors results in phagocytosis and the release of inflammatory cytokines (IL-1, TNF-alpha and IL-6) by the phagocytes.
D. Phagocytosis
The pseudopods eventually surround the bacterium and engulf it, and the bacterium is enclosed in a phagosome. During phagocytosis the granules or lysosomes of the phagocyte fuse with the phagosome and empty their contents. The result is a bacterium engulfed in a phagolysosome which contains the contents of the granules or lysosomes.
E. Respiratory burst and intracellular killing
During phagocytosis there is an increase in glucose and oxygen consumption which is referred to as the respiratory burst. The consequence of the respiratory burst is that a number of oxygen-containing compounds are produced which kill the bacteria being phagocytosed. This is referred to as oxygen-dependent intracellular killing. In addition, bacteria can be killed by pre-formed substances released from granules or lysosomes when they fuse with the phagosome. This is referred to as oxygen-independent intracellular killing.
1. Oxygen-dependent myeloperoxidase-independent intracellular killing
During phagocytosis glucose is metabolized via the pentose monophosphate shunt and NADPH is formed. Cytochrome B which was part of the specific granule combines with the plasma membrane NADPH oxidase and activates it. The activated NADPH oxidase uses oxygen to oxidize the NADPH. The result is the production of superoxide anion. Some of the superoxide anion is converted to H2O2 and singlet oxygen by superoxide dismutase. In addition, superoxide anion can react with H2O2 resulting in the formation of hydroxyl radical and more singlet oxygen. The result of all of these reactions is the production of the toxic oxygen compounds superoxide anion (O2-), H2O2, singlet oxygen (1O2) and hydroxyl radical (OH•).
2. Oxygen-dependent myeloperoxidase-dependent intracellular killing
As the azurophilic granules fuse with the phagosome, myeloperoxidase is released into the phagolysosome. Myeloperoxidase utilizes H2O2 and halide ions (usually Cl-) to produce hypochlorite, a highly toxic substance. Some of the hypochlorite can spontaneously break down to yield singlet oxygen. The result of these reactions is the production of toxic hypochlorite (OCl-) and singlet oxygen (1O2).
3. Detoxification reactions
PMNs and macrophages have means to protect themselves from the toxic oxygen intermediates. These reactions involve the dismutation of superoxide anion to hydrogen peroxide by superoxide dismutase and the conversion of hydrogen peroxide to water by catalase.
4. Oxygen-independent intracellular killing
In addition to the oxygen-dependent mechanisms of killing there are also oxygen–independent killing mechanisms in phagocytes: cationic proteins (cathepsin) released into the phagolysosome can damage bacterial membranes; lysozyme breaks down bacterial cell walls; lactoferrin chelates iron, which deprives bacteria of this required nutrient; hydrolytic enzymes break down bacterial proteins. Thus, even patients who have defects in the oxygen-dependent killing pathways are able to kill bacteria. However, since the oxygen-dependent mechanisms are much more efficient in killing, patients with defects in these pathways are more susceptible and get more serious infections.
Types of microscopy used in bacteriology
Light microscopy
Phase contrast microscopy
Fluorescence microscopy
Darkfield microscopy
Transmission electron microscopy
Scanning electron microscopy
Fluorescent microscopy in which ultraviolet rays are used to examine cells after treatment with fluorescent days.
Phase contrast microscope enhances the refractive index differences of the cell components. This microscopy can be used to reveal details of the internal structures as well as capsules, endospores and motility
Electron microscope The resolving power is more than 200 times that of light microscope.
ANTIGENS
Immunogen
A substance that induces a specific immune response.
Antigen (Ag)
A substance that reacts with the products of a specific immune response.
Hapten
A substance that is non-immunogenic but which can react with the products of a specific immune response. Haptens are small molecules which could never induce an immune response when administered by themselves but which can when coupled to a carrier molecule. Free haptens, however, can react with products of the immune response after such products have been elicited. Haptens have the property of antigenicity but not immunogenicity.
Epitope or Antigenic Determinant
That portion of an antigen that combines with the products of a specific immune response.
Antibody (Ab)
A specific protein which is produced in response to an immunogen and which reacts with an antigen.
FACTORS INFLUENCING IMMUNOGENICITY
- Larger the molecule the more immunogenic it is likely to be.
- More complex the substance is chemically the more immunogenic it will be.
- Particulate antigens are more immunogenic than soluble ones and denatured antigens more immunogenic than the native form.
- Antigens that are easily phagocytosed are generally more immunogenic. This is because for most antigens (T-dependant antigens, see below) the development of an immune response requires that the antigen be phagocytosed, processed and presented to helper T cells by an antigen presenting cell (APC).
- Some substances are immunogenic in one species but not in another. Similarly, some substances are immunogenic in one individual but not in others (i.e. responders and non-responders). The species or individuals may lack or have altered genes that code for the receptors for antigen on B cells and T cells or they may not have the appropriate genes needed for the APC to present antigen to the helper T cells.
Method of Administration
1. Dose
The dose of administration of an immunogen can influence its immunogenicity. There is a dose of antigen above or below which the immune response will not be optimal.
2. Route
Generally the subcutaneous route is better than the intravenous or intragastric routes. The route of antigen administration can also alter the nature of the response
3. Adjuvants
Substances that can enhance the immune response to an immunogen are called adjuvants. The use of adjuvants, however, is often hampered by undesirable side effects such as fever and inflammation.
TYPES OF ANTIGENS
T-independent Antigens
T-independent antigens are antigens which can directly stimulate the B cells to produce antibody without the requirement for T cell help In general, polysaccharides are T-independent antigens. The responses to these antigens differ from the responses to other antigens.
Properties of T-independent antigens
1. Polymeric structure
These antigens are characterized by the same antigenic determinant .
2. Polyclonal activation of B cells
Many of these antigens can activate B cell clones specific for other antigens (polyclonal activation). T-independent antigens can be subdivided into Type 1 and Type 2 based on their ability to polyclonally activate B cells. Type 1 T-independent antigens are polyclonal activators while Type 2 are not.
3. Resistance to degradation
T-independent antigens are generally more resistant to degradation and thus they persist for longer periods of time and continue to stimulate the immune system.
T-dependent Antigens
T-dependent antigens are those that do not directly stimulate the production of antibody without the help of T cells. Proteins are T-dependent antigens. Structurally these antigens are characterized by a few copies of many different antigenic determinants as illustrated in the Figure 2.
HAPTEN-CARRIER CONJUGATES
Hapten-carrier conjugates are immunogenic molecules to which haptens have been covalently attached. The immunogenic molecule is called the carrier.
Structure
Structurally these conjugates are characterized by having native antigenic determinants of the carrier as well as new determinants created by the hapten (haptenic determinants). The actual determinant created by the hapten consists of the hapten and a few of the adjacent residues, although the antibody produced to the determinant will also react with free hapten. In such conjugates the type of carrier determines whether the response will be T-independent or T-dependent.
SUPERANTIGENS
When the immune system encounters a conventional T-dependent antigen, only a small fraction (1 in 104 -105) of the T cell population is able to recognize the antigen and become activated (monoclonal/oligoclonal response). However, there are some antigens which polyclonally activate a large fraction of the T cells (up to 25%). These antigens are called superantigens .
Examples of superantigens include: Staphylococcal enterotoxins (food poisoning), Staphylococcal toxic shock toxin (toxic shock syndrome), Staphylococcal exfoliating toxins (scalded skin syndrome) and Streptococcal pyrogenic exotoxins (shock).